• Title/Summary/Keyword: Small IoT sensor

Search Result 65, Processing Time 0.032 seconds

Power Manageable IoT Systems Using RF433 Wireless Sensor Network and ARDUINO-YUN Based Gateway (RF433 무선 센서 네트워크와 ARDUINO-YUN 기반의 게이트웨이를 활용한 전력관리 IoT 시스템)

  • Choi, Eun-Seok;Shim, Jae-Ryong;Chang, Sekchin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.936-944
    • /
    • 2017
  • These days, research has been made for a variety of internet of things (IoT) technologies over industrial fields. The current research trend includes the effective adoption of the IoT technologies. But, most IoT researches assume a relatively complicated structure, which consists of sensor devices, gateway, network server, and application server. Of course, the structure has distinct merits in the aspects of flexibility and expandability. However, the complicated structure causes the system implementation overhead including high-cost implementation, and hinders the practical usage of IoT in the industry areas, which require a small-size network. In this paper, we propose a novel IoT system architecture, which guarantees the small-size network and the low-cost implementation. Also, we implement the infrastructure, which includes the RF433-based sensor network, the ARDUINO-YUN based gateway, and the application server using Apache/PHP/MySQL (APM) package. Finally, we present the effective power management scheme among these components.

A Smart Home Prototype Implementation Using Raspberry Pi (라즈베리파이를 이용한 스마트 홈 프로토타입 구현)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1139-1144
    • /
    • 2015
  • The internet of things(: IoT) which could produce new information as well as service through connecting small devices with internet interface becomes reality and could be utilized in home, office and plant. Especially the IoT can provide our home for safety, security, convenience, and power saving since all devices form a small internet. This paper proposes an IoT prototype for home with Raspberry Pi which has various sensors and monitors environment. This Raspberry Pi sensor node is small and inexpensive but can provide powerful service. The implemented node goes beyond simple role of sensor node and features a kind of sensor web node which performs various functions to outer network. So the proposed IoT prototype can provide flexibility as well as extensibility since it does not need expensive server.

Power Efficient IoT (Internet of Things) System using the RF433 Wireless Sensor Network and ARDUINO YUN as the Gateway (RF433 무선 센서 네트워크 및 ARDUINO YUN을 활용한 전력 효율적인 IoT 시스템)

  • Choi, Eun-Seok;Shim, Jae-Ryong;Chang, Sek-Chin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.719-722
    • /
    • 2016
  • These days there have been trying to fuse the various of IoT (Internet of Things) technology over the industrial field. However the complicated IoT System structure comprised of sensor devices, gateway, network server, and application server causes the difficulties to the system implementation and the increment of installation cost, thereby preventing IoT system deployment in the industry fit for small size network environment. In this paper, authors propose a novel IoT system architecture that is useful in the industry field to be implemented by the small size network with low cost. Also, we implement the infrastructure to RF433 wireless sensor network, the gateway on ARDUINO YUN, and the application server using AMP (Apache, PHP, MySQL) package and then present a power efficient management scheme for sensor devices.

  • PDF

Implementation of IoT-based Automatic Inventory Management System

  • Choi, Eun-Soo;Kang, Min-Soo;Jung, Yong Gyu;Paik, Jean Kyung
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.70-75
    • /
    • 2017
  • Recent development of IT industry including smart phones and communication technologies has resulted in rapid growth of Internet of Things (IoT) technology and relevant markets. The access to IoT is becoming easier thanks to the boards and IoT products, such as Arduino and Raspberry Pi. Large-scale business sites use IoT technology to manage inventories, but small-scale business sites do not. In the present study, We ported Linux-based Raspbian to Raspberry Pi, It utilizes web server communication to control the Arduino through the application We used a color sensor to figure out the kind of inventory. We also built a database using MySQL to store the data. We used raspberry pi to check whether the proposed system works and apply it to small-scale business.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

Lambda Architecture Used Apache Kudu and Impala (Apache Kudu와 Impala를 활용한 Lambda Architecture 설계)

  • Hwang, Yun-Young;Lee, Pil-Won;Shin, Yong-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.207-212
    • /
    • 2020
  • The amount of data has increased significantly due to advances in technology, and various big data processing platforms are emerging, to handle it. Among them, the most widely used platform is Hadoop developed by the Apache Software Foundation, and Hadoop is also used in the IoT field. However, the existing Hadoop-based IoT sensor data collection and analysis environment has a problem of overloading the name node due to HDFS' Small File, which is Hadoop's core project, and it is impossible to update or delete the imported data. This paper uses Apache Kudu and Impala to design Lambda Architecture. The proposed Architecture classifies IoT sensor data into Cold-Data and Hot-Data, stores it in storage according to each personality, and uses Batch-View created through Batch and Real-time View generated through Apache Kudu and Impala to solve problems in the existing Hadoop-based IoT sensor data collection analysis environment and shorten the time users access to the analyzed data.

The research on Diffie-Hellman-based IoT Sensor Node key management (Diffie-Hellman 기반 사물인터넷 센서노드 키 관리 연구)

  • Hong, Sunghyuck;Yu, Jina
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.9-14
    • /
    • 2017
  • Recently, the Internet of Things are developing in accordance with the technology of implementation in low-cost, small-size, low power consumption and smart sensor that can communicate using the internet. Especially, key management researches for secure information transmission based on the Internet of Things (IoT) are actively performing. But, Internet of Things(IoT) are uses sensor. Therefore low-power consumption and small-memory are restrictive condition. As a result, managing the key is difficult as a general security measure. However, The problem of secure key management is an essential challenge For the continuous development of the Internet of things. In this paper, we propose a key distribution and management technique in secure Internet of things. In the key generation and management stage, it satisfies the conditions and without physically constrained for IoT based communication.

A Study on improving manufacturing environment using IoT technology in small business environment (중소기업 환경에서 IoT 기술을 이용한 제조 환경 개선에 관한 분석 연구)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • To launch the product recently attached to IoT consumer electronics, smart phones and healthcare products around the large companies is a trend that is growing interest in the IoT. However, the country's small business environment is what the environmental improvement process that is easily accessible to the small business environment because the IoT technologies are difficult to apply the IoT technologies than any other country environment than desperate situation. In this paper, we propose a service operating model to improve production efficiency when the fusion manufacturing process is currently operating in the country SMEs and IoT technology. Proposed model using the manufacturing product information and sensor / dabayiseu information in the entire manufacturing process has as its object to utilize the IoT technology. Performance evaluation, the proposed model is more efficient than the previous model and 23.1% of the manufacturing process. In addition, it is increasing the manufacturing process was reduced by 17.3%, the average processing time as compared to the previous model. Finally, the personnel cost to be used in the manufacturing process was found to be an average decrease of 19.8% than previous model.

Space-Efficient Compressed-Column Management for IoT Collection Servers (IoT 수집 서버를 위한 공간효율적 압축-칼럼 관리)

  • Byun, Siwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.1
    • /
    • pp.179-187
    • /
    • 2019
  • With the recent development of small computing devices, IoT sensor network can be widely deployed and is now readily available with sensing, calculation and communi-cation functions at low cost. Sensor data management is a major component of the Internet of Things environment. The huge volume of data produced and transmitted from sensing devices can provide a lot of useful information but is often considered the next big data for businesses. New column-wise compression technology is mounted to the large data server because of its superior space efficiency. Since sensor nodes have narrow bandwidth and fault-prone wireless channels, sensor-based storage systems are subject to incomplete data services. In this study, we will bring forth a short overview through providing an analysis on IoT sensor networks, and will propose a new storage management scheme for IoT data. Our management scheme is based on RAID storage model using column-wise segmentation and compression to improve space efficiency without sacrificing I/O performance. We conclude that proposed storage control scheme outperforms the previous RAID control by computer performance simulation.

A Study for the Mechanical Properties with Infill Rate in FDM Process to Fabricate the Small IoT Device (소형 IoT 기기 제작을 위한 FDM 프린팅 공정에서의 내부채움에 따른 물성치 변화 연구)

  • Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2020
  • Recently, the size of the IoT sensor has been decreased and the collecting direction of the IoT sensor for acquiring the data have been changed from 2D to 3D. It makes sensor structure complex. In the fabrication of the complex structure, 3D printing technology has more useful than traditional manufacturing technologies. Among 3D printing technologies, FDM (fused deposition modeling) is a candidate technology to fabricate a small IoT sensor because the price of the machine and the material is cheap. In the FDM process, a 3D shape is made by depositing the melted filament. Recently, the patent of FDM technology is expired and cheat machines are developed based on the open-source. In the FDM process, mechanical properties of a fabricated part is affected by a lots of factors such as the kind of material and process parameters. Among them, infill is affecting the mechanical properties and the production lead time as well. In this work, a new method to optimize the FDM process with the consideration of mechanical property and production lead time was proposed. To verify the method, the fabrications were performed with the different infill rates. The results of tensile tests were analyzed to verify the proposed method.