• Title/Summary/Keyword: Smad7

Search Result 47, Processing Time 0.021 seconds

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Analysis of Gene Expression in Mouse Spinal Cord-derived Neural Precursor Cells During Neuronal Differentiation

  • Ahn, Joon-Ik;Kim, So-Young;Ko, Moon-Jeong;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.85-96
    • /
    • 2009
  • The differentiation of neural precursor cells (NPCs) into neurons and astrocytes is a process that is tightly controlled by complicated and ill-defined gene networks. To extend our knowledge to gene networks, we performed a temporal analysis of gene expression during the differentiation (2, 4, and 8 days) of spinal cord-derived NPCs using oligonucleotide microarray technology. Out of 32,996 genes analyzed, 1878 exhibited significant changes in expression level (fold change>2, p<0.05) at least once throughout the differentiation process. These 1878 genes were classified into 12 groups by k-means clustering, based on their expression patterns. K-means clustering analysis revealed that the genes involved in astrogenesis were categorized into the clusters containing constantly upregulated genes, whereas the genes involved in neurogenesis were grouped to the cluster showing a sudden decrease in gene expression on Day 8. Functional analysis of the differentially expressed genes indicated the enrichment of genes for Pax6- NeuroD signaling.TGFb-SMAD and BMP-SMAD.which suggest the implication of these genes in the differentiation of NPCs and, in particular, key roles for Nova1 and TGFBR1 in the neurogenesis/astrogenesis of mouse spinal cord.

Effects of Fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver Extracts on Regulation of Apoptosis in Articular Chondrocytes (Primary Chondrocytes에서 발효우슬, 당귀, 두충 복합물의 세포사멸 조절 효과)

  • Dakyung Kim;Wonhee Jo;Minhee Lee;Hyun Cheol Jeong;Sung-Jin Lee;Seunghun Lee;Jeongmin Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.7-14
    • /
    • 2023
  • The effects of fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver extracts (FAAE) on regulation of inflammation and apoptosis were investigated in primary cultured rat cartilage cells. To identify the protective effects of FAAE against H2O2, cell survival was measured by MTT assay. Smad3, Collagen type I, MMP3, and MMP13 were measured by real-timpe PCR and westernbot and the inflammatory (NF-κB pathway, COX-2, iNOS) factors were determined by western blot. The apoptosis related factors (JNK, c-Fos, c-Jun, caspase 3, Bax, and Bcl-2) were determined by western blot. FAAE significantly increased the follwing: H2O2 treated cell survival, mRNA and protein expression of Smad 3, collagen type I. In addition, FAAE significantly decreased the protein expression of inflammatory and apoptosis related factors. This study suggests that FAAE have a protection effect of chondrocytes through inhibition of inflammation and apoptosis. Thus, FAAE is a therapeutic potential food componet in osteoarthritis.

Wiryeongtang attenuates diabetic renal dysfunction in human renal mesangial cells (위령탕(胃苓湯) 추출물의 사람 유래 신장 메산지움 세포에서의 당뇨병성 신장 손상 개선 효과)

  • Yoon, Jung Joo;Han, Byung Hyuk;Choi, Eun Sik;NamGung, Seung;Jeong, Da Hye;Kim, Hye Yoom;Ahn, You Mee;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.71-78
    • /
    • 2016
  • Objectives : Diabetic nephropathy is one of the most common chronic complications of diabetes and a leading cause of end-stage renal failure in the world. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis and renal fibrosis. Wiryeongtang (WRT) is a well-known traditional herbal formula as therapeutic agents for chronic edema and dysuresia of renal homeostasis. In the present study, we investigated whether WRT inhibits high glucose (HG)-induced renal dysfunction by TGF-β/Smads signal regulation in cultured mesangial cells.Methods : Inhibitory effect of WRT (10-50 ㎍/ml) on HG-stimulated mesangial cells proliferation and dysfunction were evaluated by [3H]-thymidine incorporation, Western blot, and RT-qPCR.Results : WRT significantly decreased HG-accelerated thymidine incorporation in human renal mesangial cell in a dose-dependent levels. WRT induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, HG enhanced expression of dysfunction biomarker such as collagen IV and CTGF, which was markedly attenuated by WRT. WRT decreased TGF-β1 and Smad-2/Smad-4 expression, whereas increased Smad-7 expression under HG. Furthermore, WRT inhibited HG-induced inflammatory factors level such as ICAM-1 and MCP-1 as well as NF-κB p65 nuclear translocation and intracellular ROS production.Conclusions : These results suggested that WRT may alleviate mesangial proliferation and inflammation possibly involved in renal fibrotic process, further diabetic nephropathy through disturbing TGF-β1/Smad signaling and NF-κB/ROS pathway. Thus, WRT might prove to be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

Anti-Inflammatory and Anti-Fibrotic Activities of Nocardiopsis sp. 13G027 in Lipopolysaccharides-Induced RAW 264.7 Macrophages and Transforming Growth Factor Beta-1-Stimulated Nasal Polyp-Derived Fibroblasts

  • Choi, Grace;Kim, Geum Jin;Choi, Hyukjae;Choi, Il-Whan;Lee, Dae-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.543-551
    • /
    • 2021
  • Nocardiopsis species produce bioactive compounds, such as antimicrobial and anti-cancer agents and toxins. However, no reports have described their anti-inflammatory and anti-fibrotic effects during nasal polyp (NP) formation. In this study, we investigated whether marine-derived bacterial Nocardiopsis sp. 13G027 exerts anti-inflammatory and anti-fibrotic effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and transforming growth factor (TGF)-β1-induced NP-derived fibroblasts (NPDFs). Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were analyzed. Extract from Nocardiopsis sp. 13G027 significantly inhibited the upregulation of NO and PGE2 in LPS-activated RAW 264.7 macrophages. The expression of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt/PKB) in LPS-induced RAW 264.7 macrophages was evaluated; smooth muscle alpha-actin (α-SMA), collagen type I (Col-1), and fibronectin also phosphorylated small mothers against decapentaplegic (SMAD) 2 and 3 in TGF-β1-stimulated NPDFs. The Nocardiopsis sp. 13G027 extract suppressed the phosphorylation of MAPKs and Akt and the DNA-binding activity of activator protein 1 (AP-1). The expression of pro-fibrotic components such as α-SMA, Col-1, fibronectin, and SMAD2/3 was inhibited in TGF-β1-exposed NPDFs. These findings suggest that Nocardiopsis sp. 13G027 has the potential to treat inflammatory disorders, such as NP formation.

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

Treatment with phosphodiester CpG-ODN ameliorates atopic dermatitis by enhancing TGF-β signaling

  • Ham, Won-Kook;Lee, Eun-Jung;Jeon, Myung Shin;Kim, Hae-Young;Agrahari, Gaurav;An, Eun-Joo;Bang, Chul Hwan;Kim, Doo-Sik;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.142-147
    • /
    • 2021
  • Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG phosphorothioate (PS CpG-ODN) are known to decrease IgE synthesis in Th2 allergy responses. Nonetheless, the therapeutic role of PS CpG-ODN is limited due to cytotoxicity. Therefore, we developed a phosphodiester (PO) form of CpG-ODN (46O) with reduced toxicity but effective against allergies. In this study, we first compared the toxicity of 46O with CpG-ODNs containing a PS backbone (1826S). We also investigated the therapeutic efficacy and mechanism of 46O injected intravenously in a mouse model of ovalbumin (OVA)-induced atopic dermatitis (AD). To elucidate the mechanism of 46O underlying the inhibition of IgE production, IgE- and TGF-β-associated molecules were evaluated in CD40/IL-4- or LPS/IL-4-stimulated B cells. Our data showed that the treatment with 46O was associated with a lower hematological toxicity compared with 1826S. In addition, injection with 46O reduced erythema, epidermal thickness, and suppressed IgE and IL-4 synthesis in mice with OVA-induced AD. Additionally, 46O induced TGF-β production in LPS/IL-4-stimulated B cells via inhibition of Smad7, which suppressed IgE synthesis via interaction between Id2 and E2A. These findings suggest that enhanced TGF-β signaling is an effective treatment for IgE-mediated allergic conditions, and 46O may be safe and effective for treating allergic diseases such as AD and asthma.

Expression Patterns of $TGF-{\beta}1,\;TGF-{\beta}$ Receptor Type I, II and Substrate Proteins Smad 2, 3, 4 and 7 in Bovine Oocytes and Embryos

  • Chung, Hak-Jae;Kim, Bong-Ki;Kim, Jong-Mu;Lee, Hyun-Gi;Han, Joo-Hee;Kim, Nam-Hyung;Park, Jin-Ki;Seong, Hwan-Hoo;Yang, Boh-Suk;Chang, Won-Kyong;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.271-277
    • /
    • 2006
  • Transforming growth $factor-{\beta}\;(TGF-{\beta})$ has been shown to have a positive effect on in vitro fertilization (IVF) and has been reported to stimulate meiosis at follicular level in variety of species. The study was designed to determine the expression patterns of $TGF-{\beta}1,\;TGF-{\beta}$ receptors type I, II and Smads gene in bovine oocytes and embryos. $TGF-{\beta}1$ and their receptors were observed in the unfertilized oocytes. $TGF-{\beta}1$ and type II receptor were not expressed at the blastocyst stage, however, only type I receptor was exclusively observed at the same stage. The blastocyst stage, in particular, showed high levels of mRNA expression patterns containing a $TGF-{\beta}1$ type I receptor. The mRNA expression pattern of Smad 2 at all stages of embryonic development was similar in all respect with $TGF-{\beta}1$ type I receptor. On the contrary, Smad 3 and 4 were expressed with high and low level mRNA at the blastocyst stage. In conclusion. it is suggested that $TGF-{\beta}1$ signaling may be regarded as an important entity during the preimplantation embryo development.

Substrate-immobilized bone morphogenic protein-7 peptides on titanium surface support the expression of extracellular matrix proteins

  • Kim, Young-Joon;Chung, Chan-Gil;Cui, De-Zhe
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.627-637
    • /
    • 2006
  • 이 연구는 rh BMP-7-immobilized substrates에 대한 백서 태자 두개관 세포의 반응을 석회화 결절 측정, 알카리 효소 분석, 역전사 중합반응 및 단백질 분석등으로 평가하여 다음과 같은 결과를 얻었다. 1. 배양 14일 째, 석회화 결절 형성율을 측정한 결과, rh BMP-7-immobilized substrates에서 대조군과 비교하여 더 많은 석회화 결절을 형성하였다. 2. 배양 7일에 염기성 인산 분해효소 활성도는 rh BMP-7-immobilized substrates에서 대조군에 비해 효소 활성도가 유의하게 높았다. 3. 역전사 중합반응의 결과에서 BSP 와 OCN 유전자 발현은 대조군보다 더 현저하였다. 4. 단백질 분석에서 rh BMP-7-immobilized substrates와 대조군 모두 Smad 1,5,8 단백질의 인산화를 활성화시키지 못했다. 이상의 결과 rh BMP-7-immobilized substrates는 백서 태자 두개관세포가 조골세포로의 분화와 석회화를 유도하며 따라서 rh BMP-7-immobilized substrates는 임프란트 주변의 골 형성에 유용하리라 사료된다.

Predictive Role of Computer Simulation in Assessing Signaling Pathways of Crizotinib-treated A549 Lung Cancer Cells

  • Xia, Pu;Mou, Fei-Fei;Wang, Li-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3119-3121
    • /
    • 2012
  • Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.