DOI QR코드

DOI QR Code

Analysis of Gene Expression in Mouse Spinal Cord-derived Neural Precursor Cells During Neuronal Differentiation

  • Ahn, Joon-Ik (Molecular Pharmacology Division, Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Kim, So-Young (Molecular Pharmacology Division, Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Ko, Moon-Jeong (Molecular Pharmacology Division, Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Chung, Hye-Joo (Molecular Pharmacology Division, Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Jeong, Ho-Sang (Molecular Pharmacology Division, Pharmacological Research Department, National Institute of Toxicological Research)
  • Published : 2009.06.30

Abstract

The differentiation of neural precursor cells (NPCs) into neurons and astrocytes is a process that is tightly controlled by complicated and ill-defined gene networks. To extend our knowledge to gene networks, we performed a temporal analysis of gene expression during the differentiation (2, 4, and 8 days) of spinal cord-derived NPCs using oligonucleotide microarray technology. Out of 32,996 genes analyzed, 1878 exhibited significant changes in expression level (fold change>2, p<0.05) at least once throughout the differentiation process. These 1878 genes were classified into 12 groups by k-means clustering, based on their expression patterns. K-means clustering analysis revealed that the genes involved in astrogenesis were categorized into the clusters containing constantly upregulated genes, whereas the genes involved in neurogenesis were grouped to the cluster showing a sudden decrease in gene expression on Day 8. Functional analysis of the differentially expressed genes indicated the enrichment of genes for Pax6- NeuroD signaling.TGFb-SMAD and BMP-SMAD.which suggest the implication of these genes in the differentiation of NPCs and, in particular, key roles for Nova1 and TGFBR1 in the neurogenesis/astrogenesis of mouse spinal cord.

Keywords

References

  1. Bertrand, N., Castro, D.S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517-530 https://doi.org/10.1038/nrn874
  2. Bramblett, D.E., Copeland, N.G., Jenkins, N.A., and Tsai, M.J. (2002). BHLHB4 is a bHLH transcriptional regulator in pancreas and brain that marks the dimesencephalic boundary. Genomics 79, 402-412 https://doi.org/10.1006/geno.2002.6708
  3. Camu, W., and Henderson, C.E. (1992). Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the rat low-affinity NGF receptor. J. Neurosci. Meth. 44, 59-70 https://doi.org/10.1016/0165-0270(92)90114-S
  4. Cheng, A., Coksaygan, T., Tang, H., Khatri, R., Balice-Gordon, R.J., Rao, M.S., and Mattson, M.P. (2006). Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J. Neurochem. 100, 1515-1530 https://doi.org/10.1111/j.1471-4159.2006.04337.x
  5. Chung, T.S., Chung, H.J., and Kim, J.H. (2007). PathTalk: Interpretation of microarray gene-expression clusters in association with biological pathways. G&I 5, 124-128
  6. Climent, E., Sancho-Tello, M., Miñana, R., Barettino, D., and Guerri, C. (2000). Astrocytes in culture express the full-length Trk-B receptor and respond to brain derived neurotrophic factor by changing intracellular calcium levels: effect of ethanol exposure in rats. Neurosci. Lett. 288, 53-56 https://doi.org/10.1016/S0304-3940(00)01207-6
  7. de Sampaio e Spohr, T.C., Martinez, R., da Silva, E.F., Neto, V.M., and Gomes, F.C. (2002). Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1. Eur. J. Neurosci. 16, 2059-2069 https://doi.org/10.1046/j.1460-9568.2002.02283.x
  8. Deneen, B., Ho, R., Lukaszewicz, A., Hochstim, C.J., Gronostajski, R.M., and Anderson, D.J. (2006). The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953-968 https://doi.org/10.1016/j.neuron.2006.11.019
  9. Fukuda, S., Abematsu, M., Mori, H., Yanagisawa, M., Kagawa, T., Nakashima, K., Yoshimura, A., and Taga, T. (2007). Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein- Smad signaling in neural stem cells. Mol. Cell. Biol. 27, 4931-4937 https://doi.org/10.1128/MCB.02435-06
  10. Guo, L., Jiang, M., Ma, Y., Cheng, H., Ni, X., Jin, Y., Xie, Y., and Mao, Y. (2002). Cloning, chromosome localization and features of a novel human gene, MATH2. J. Genet. 81, 13-17 https://doi.org/10.1007/BF02715865
  11. Holm, P.C., Mader, M.T., Aubst, H.N., Wizenmann, A., Sigvardsson, M., and Götz, M. (2007). Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol. Cell. Neurosci. 34, 99-119 https://doi.org/10.1016/j.mcn.2006.10.008
  12. Jimenez, D., Lopez-Mascaraque, L., de Carlos, J.A., and Valverde, F. (2002). Further studies on cortical tangential migration in wild type and Pax-6 mutant mice. J. Neurocytol. 31, 719-728 https://doi.org/10.1023/A:1025751914372
  13. Jones, L., Lopez-Bendito, G., Gruss, P., Stoykova, A., and Molnar, Z. (2002). Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041-5052
  14. Kageyama, R., Ohtsuka, T., Hatakeyama, J., and Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Exp. Cell. Res. 306, 343-348 https://doi.org/10.1016/j.yexcr.2005.03.015
  15. Kalyani, A., Hobson, K., and Rao, M.S. (1997). Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev. Biol. 186, 202-223 https://doi.org/10.1006/dbio.1997.8592
  16. Kalyani, A.J., Piper, D., Mujtaba, T., Lucero, M.T., and Rao, M.S. (1998). Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856-7868
  17. Kantor, D.B., Chivatakarn, O., Peer, K.L., Oster, S.F., Inatani, M., Hansen, M.J., Flanagan, J.G., Yamaguchi, Y., Sretavan, D.W., Giger, R.J., and Kolodkin, A.L. (2004). Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961-975 https://doi.org/10.1016/j.neuron.2004.12.002
  18. Ko, M.J., Choi, H.S., Ahn, J.I., Kim, S.Y., Jeong, H.S., and Chung, H.J. (2008). Gene Expression Profiling in C57BL/6 Mice Treated with the Anorectic Drugs Sibutramine and Phendimetrazine and Their Mechanistic Implications. G&I 6, 117-125 https://doi.org/10.5808/GI.2008.6.3.117
  19. Lee, J., Wu, Y., Qi, Y., Xue, H., Liu, Y., Scheel, D., German, M., Qiu, M., Guillemot, F., Rao, M., and Gradwohl, G. (2003). Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Dev. Biol. 253, 84-98 https://doi.org/10.1006/dbio.2002.0868
  20. Lu, Q.R., Yuk, D., Alberta, J.A., Zhu, Z., Pawlitzky, I., Chan, J., McMahon, A.P., Stiles, C.D., and Rowitch, D.H. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317-329 https://doi.org/10.1016/S0896-6273(00)80897-1
  21. McLellan, A.S., Langlands, K., and Kealey, T. (2002). Exhaustive identification of human class II basic helix- loop-helix proteins by virtual library screening. Gene Expr. Patterns. 2, 329-335 https://doi.org/10.1016/S0925-4773(03)00130-8
  22. Nakashima, K., Takizawa, T., Ochiai, W., Yanagisawa, M., Hisatsune, T., Nakafuku, M., Miyazono, K., Kishimoto, T., Kageyama, R., and Taga, T. (2001). BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl. Acad. Sci. U.S.A. 98, 5868-5873 https://doi.org/10.1073/pnas.101109698
  23. Poh, A., Karunaratne, A., Kolle, G., Huang, N., Smith, E., Starkey, J., Wen, D., Wilson, I., Yamada, T., and Hargrave, M. (2002). Patterning of the vertebrate ventral spinal cord. Int. J. Dev. Biol. 46, 597-608
  24. Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A., and Temple, S. (2000). Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69-80 https://doi.org/10.1016/S0896-6273(00)00086-6
  25. Ratti, A., Fallini, C., Colombrita, C., Pascale, A., Laforenza, U., Quattrone, A., and Silani, V. (2008). Post-transcriptional regulation of neuro-oncological ventral antigen 1 by the neuronal RNA-binding proteins ELAV. J. Biol. Chem. 283, 7531-7541 https://doi.org/10.1074/jbc.M706082200
  26. Scardigli, R., Schuurmans, C., Gradwohl, G., and Guillemot, F. (2001). Cross regulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203-217 https://doi.org/10.1016/S0896-6273(01)00358-0
  27. Schwab, M.H., Bartholomae, A., Heimrich, B., Feldmeyer, D., Druffel-Augustin, S., Goebbels, S., Naya, F.J., Zhao, S., Frotscher, M., Tsai, M.J., and Nave, K.A. (2000). Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci. 20, 3714-3724
  28. Stipursky, J., and Gomes, F.C. (2007). TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro : implications for radial glia development. Glia 55, 1023-1033 https://doi.org/10.1002/glia.20522
  29. Sugimori, M., Nagao, M., Bertrand, N., Parras, C.M., Guillemot, F., and Nakafuku, M. (2007). Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134, 1617-1629 https://doi.org/10.1242/dev.001255
  30. Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M.Z., Zubiaga, A., Hua, X., Fan, G., and Greenberg, M.E. (2001). Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365-376 https://doi.org/10.1016/S0092-8674(01)00224-0
  31. Sun, Y.E., Martinowich, K., and Ge, W. (2003). Making and repairing the mammalian brain signaling toward neurogenesis and gliogenesis. Semin. Cell. Dev. Biol. 14, 161-168 https://doi.org/10.1016/S1084-9521(03)00007-7
  32. Xu, Z.P., Dutra, A., Stellrecht, C.M., Wu, C., Piatigorsky, J., and Saunders, G.F. (2002). Functional and structural characterization of the human gene BHLHB5, encoding a basic helix-loop-helix transcription factor. Genomics 80, 311-318 https://doi.org/10.1006/geno.2002.6833
  33. Yue, Y., Grossmann, B., Galetzka, D., Zechner, U., and Haaf, T. (2006). Isolation and differential expression of two isoforms of the ROBO2/Robo2 axon guidance receptor gene in humans and mice. Genomics 88, 772-778 https://doi.org/10.1016/j.ygeno.2006.05.011
  34. Zhou, Q., and Anderson, D.J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61-73 https://doi.org/10.1016/S0092-8674(02)00677-3