• Title/Summary/Keyword: Slurry mixing

Search Result 127, Processing Time 0.033 seconds

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

Sintering and Microstructure of PZT Ceramics Prepared from Nanoparticles by Sol-Gel Process (나노 입자를 이용한 PZT 압전 세라믹스의 소결 및 미세구조)

  • Park Yong-Kap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.457-460
    • /
    • 2005
  • Nano-sized titanium oxide and zirconium oxide powders were synthesized by hydrolysis of titanium isopropoxide $[Ti(OC_3H7)_4]$ and zirconium tetrachloride ($ZrC1_4$) via a sol-gel technique. Lead titanate powders were prepared by mixing $TiO_2$ precursors with PbO slurry made with dilute $NH_4OH$. Lead zirconate titanate powders were, then, synthesized by mixing $PbTiO_3$ with $ZrO_2$ powders. The goal of this research was to obtain the $PbZrTiO_3(PZT)$ powders and sintering these powders at low temperature. The $PbTiO_3$ and PZT powders after firing were analyzed by X-ray diffraction(XRD) and transmission electron microscopy(TEM) was utilized to observe the shape and size of the synthesized nano-particles. In the XRD pattern, the well-crystallized PZT phase could be obtained in consequence of firing at $900^{\circ}C$. SEM micrographs also showed that grains of PZT were relatively well grown with the size of the range of $2{\~}4{\mu}m$. The densified perovskite structure of $PbZrTiO_3$ could be obtained by sintering at temperature as low as $900^{\circ}C$. Characterization of the samples showed improved piezoelectric properties.

  • PDF

Uranium Leaching from Low-Grade Uranium Ore by Thiobacillus ferrooxidans (Thiobacillus ferrooxidans에 의한 저품위 우라늄 광석으로부터 우라늄 침출)

  • 이현섭;표관웅유연우김철
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.353-359
    • /
    • 1996
  • The experiments were conducted in the leaching of aqueous uranium from low-grade uranium ore by Thiobacillus ferrooxidans. The optimal concentration of ferrous iron in 9K medium was 16.2g/L when the uranium ore concentration in slurry was 40g/L. The leaching rates were increased by decreasing the particle size of uranium ore and by increasing uranium ore concentration. In the leaching experiments in an agitated vessel reactor, only 39.3% of uranium was leached out within 12 days, which was comparable as that in the shaking incubator, without any notable improvement. Hence, it was observed that an agitated vessel reactor was not effective in the leaching of uranium from uranium ore by T. ferrooxidans. In the leaching experiments in a draught-tube reactor, the maximum concentration of uranium leached and cell number were a 12.8mg/L and $2.47{\times}1010cells/mL$ respectively. The uranium yield reached up to 91.4% within 11 days culture due to enhanced aeration and mixing characteristics of draught-tube reactor as compared to agitated vessel reactor.

  • PDF

Development of Organic-Inorganic Hybrid Insulating Materials with Semi-Non-Combustible Using by Recycling Gypsum (재활용 석고 부산물을 이용한 준불연 유무기 융합 단열재 개발 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.431-437
    • /
    • 2019
  • The purpose of this study is to develop an organic-inorganic hybrid insulation materials which has an economic feasibility of organic level and excellent adiabatic performance and fire stability by impregnating organic materials with inorganic binder solutions. The organic base was commercial polyurethane sponge, and the inorganic binder slurry was prepared by mixing water and additives into recycled gypsum byproducts. As a result of evaluation of the developed materials, it was confirmed that it not only has excellent insulation performance of a thermal conductivity of 0.051 W/mK or less but also it is a semi-non-combustible materials specified in the Ministry of Land, Infrastructure and Transport Notice No. 2015-744. The developed materials can also be controlled for thermal conductivity and flame retardance according to density control during manufacturing process, and thus it can be applied to various insulation materials.

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

Development of Autoclave Aerated Concrete Using Circulating Fluidized Bed Combustion Ash (순환유동층 보일러애쉬를 활용한 경량기포 콘크리트 개발)

  • Lee, Chang Joon;Song, Jeong-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • In this study, as a method to increase the recycling of circulating fluidized bed combustion ash(CFBCA), CFBCA was utilized to produce autoclave aerated concrete product since CFBCA contains quicklime and calcium sulfate components that are required for the manufacture of autoclave aerated concrete. Successful achievement of such objective will bring cost reduction with high value addition, saving of natural resources, and the reduction of environmental load. Various mixing designs were designed to evaluate the properties of autoclave aerated concrete made of CFBCA. Based on series of experimental program, prototypes mix design for factory manufacturing was obtained. According to the experimental results, it was confirmed that gypsum can be replaced with CFBCA through the method of pre-treating the CFBCA as a slurry. It was possible to produce competitive autoclave aerated concrete products using CFBCA.

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Field Applicability Evaluation of Control Low Strength Materials as Utilizing Various Industrial by-Products (공동충전재로써 각종 산업부산물을 활용한 CLSM의 현장적용 가능성 평가)

  • Liao, Xiao-kai;Kim, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • In this research, a physical property test of CLSM, which can safely and effectively utilize a great number of industrial byproducts and waste types, was used to review the applicability of GBFS, FNS, and FGB, as well as their field applicabilities as cavity fillers, and the following conclusions have been reached. first, For CLSM utilizing GBFS, FNS, and FGB, it was revealed that a proper mixing of over 30% of GBFS and FNS or within 5% of FGB is effective in improving the fluidity for field application. second, It was revealed that GF15B5 can suppress bleeding at a similar level as the base, whereas GF30B5 can do so at about 0.17% compared to the base. It was also verified that GF15, GF30, and GF45 can suppress bleeding at about 0.2%, 0.26%, and 0.3%, respectively, compared to the base. third, Both GF15B5 and GF30B5 exceeded 0.4MPa in 7day strength tests to satisfy the field application and, also, the rates of increase of their initial strengths were found to be 323% and 233% higher than the base, respectively. Meanwhile, the 7day strength test of GF, which utilizes GBFS and FNS, also reached over 0.2MPa for field application, and it was revealed that GF15, GF30, and GF45 show 160%, 237%, and 185% higher strength increase rates, respectively, compared to the base.