DOI QR코드

DOI QR Code

Field Applicability Evaluation of Control Low Strength Materials as Utilizing Various Industrial by-Products

공동충전재로써 각종 산업부산물을 활용한 CLSM의 현장적용 가능성 평가

  • Liao, Xiao-kai (Department of Architectural Engineering, Tong Myong University) ;
  • Kim, Dong-Hun (Department of Architectural Engineering, Tong Myong University)
  • 료효개 (동명대학교 건축공학과) ;
  • 김동훈 (동명대학교 건축공학과)
  • Received : 2020.09.04
  • Accepted : 2020.10.12
  • Published : 2020.12.30

Abstract

In this research, a physical property test of CLSM, which can safely and effectively utilize a great number of industrial byproducts and waste types, was used to review the applicability of GBFS, FNS, and FGB, as well as their field applicabilities as cavity fillers, and the following conclusions have been reached. first, For CLSM utilizing GBFS, FNS, and FGB, it was revealed that a proper mixing of over 30% of GBFS and FNS or within 5% of FGB is effective in improving the fluidity for field application. second, It was revealed that GF15B5 can suppress bleeding at a similar level as the base, whereas GF30B5 can do so at about 0.17% compared to the base. It was also verified that GF15, GF30, and GF45 can suppress bleeding at about 0.2%, 0.26%, and 0.3%, respectively, compared to the base. third, Both GF15B5 and GF30B5 exceeded 0.4MPa in 7day strength tests to satisfy the field application and, also, the rates of increase of their initial strengths were found to be 323% and 233% higher than the base, respectively. Meanwhile, the 7day strength test of GF, which utilizes GBFS and FNS, also reached over 0.2MPa for field application, and it was revealed that GF15, GF30, and GF45 show 160%, 237%, and 185% higher strength increase rates, respectively, compared to the base.

본 연구에서는 다량의 산업부산물 및 폐기물을 안전하게 유효 활용할 수 있는 CLSM의 기초적 물성시험을 통해 FA 및 잔골재의 대체 재료로써 GBFS 및 FNS, FGB의 적용가능성을 검토하였다. 나아가, 도로 및 노면하부, 포토홀 등의 공동충전재로서의 현장적용 가능성에 대해서도 검토하여 다음과 같은 결론을 얻었다. 첫째, GBFS 및 FNS, FGB를 활용한 CLSM의 경우 GBFS 및 FNS는 각각 30% 이상, FGB는 5% 이내에서 적정 혼합하면 현장적용을 위한 유동성 개선에 유효한 것으로 나타났다. 둘째, GF15B5는 Base 대비 동등 정도의 블리딩율이 GF30B5는 Base 대비 0.17% 정도 블리딩을 억제할 수 있는 것으로 나타났다. 또한, Base 대비 GF15는 0.2%, GF30 및 GF45는 각각 0.26% 및 0.3% 정도 블리딩을 억제할 수 있는 것으로 확인되었다. 셋째, GF15B5 및 GF30B5 모두 7일 강도가 0.4MPa을 초과하여 현장적용을 만족하였고 또한, 초기강도의 증가비율이 Base 대비 각각 323% 및 233% 높게 나타나는 것으로 파악되었다. 또한, GF의 경우도 현장적용을 위한 7일 강도가 0.2MPa 이상을 모두 만족하였고 Base 대비 GF15는 160%, GF30 및 GF45는 각각 237% 및 185% 정도의 높은 강도증가비율이 확인되었다. 넷째, GBFS 및 FNS, FGB를 복합적으로 활용한 CLSM의 경우 Cr의 농도가 비교적 높게 용출되는 것으로 파악되어 대량의 지하수 및 침투수가 유입되는 환경하에서는 Cr의 용출에 의한 환경적 안전성 검토가 이루어져야 할 것으로 판단된다.

Keywords

References

  1. ACI Committee 229 (2013). Controlled Low Strength Materials, ACI Manual of Concrete Practice, ACI 229 R(13).
  2. Civil Research Institute Ministry of Construction Japanese Government (2008). Liquified Stabilized Soil (CLSM) Uses Technical Manual, Gibodan Publishing Company.
  3. Halmen, S., Shah, H. (2015). Controlled low-strength materials composed solely of by-products, ACI Materials Journal, 112(2), 239-246.
  4. Hokkaido Civil Technical Concrete Research Committee (2006). CLSM Use Manual, CLSM Supply Review Committee.
  5. Horiguchi, T., Fujita, R., Shimura, K. (2011). Applicability of controlled low-strength materials with incinerated sewage sludge ash and crushed-stone powder, Journal of Materials in Civil Engineering, 23(6), 767-769. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000201
  6. Horiguchi, T., Okumura, H., Saeki, N. (2001). Durability of CLSM with used foundry sand bottom ash in cold regions, ACI Special Publication SP, 200(2), 325-348.
  7. Horiguchi, T., Okumura, H., Saeki, N. (2001). Optimization of CLSM mixture proportion with combination of clinker ash and fly ash, ACI Special Publication SP, 199(1), 307-324.
  8. Horiguchi, T., Saeki, N. (2004). Compressive strength and leachate characteristics of new green CLSM with ecocement and melted slag from municipal solid waste, ACI Special Publication SP, 221(6), 529-558.
  9. Keon, C.W., Lim, N.G. (2013). Fundamental properties of low strength concrete mixture with blast furnace slag and sewage sludge, Journal of the Korea Institute of Structural Maintenance and Inspection, 17(3), 136-144. https://doi.org/10.11112/jksmi.2013.17.3.136
  10. Kim, D.H., Lim, N.G., Horiguchi, T. (2012). Rational method of CLSM mixture with sewage sludge cinder, Journal of Concrete Institute, 24(4), 465-472. https://doi.org/10.4334/JKCI.2012.24.4.465
  11. Mizuguchi, O., Onodera, T., Horiguchi, T., Ii, H. (2004). Application of CLSM(controlled low strength materials) in Japan, Journal of Concrete Institute of Japan, 42(10), 19-28. https://doi.org/10.3151/coj1975.42.10_19
  12. Raghavendra, T., Sunil, M., Udayashankar, BC. (2016). Controlled low-strength materials using bagasse ash and fly ash, ACI Materials Journal, 113(4), 447-457.
  13. Wei, C., John, R., Kenneth, C.H. (2019). High-volume carbon sequestration for controlled low-strength materials, ACI Materials Journal, 116(4), 235-244.