• 제목/요약/키워드: Sloshing motion

Search Result 141, Processing Time 0.02 seconds

Vibration Characteristics of Liquid Column Vibration Absorber with Various Area Ratio (다양한 수평 수직 단면적비를 가지는 LCVA의 진동특성 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Hyun-Chin;Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.121-125
    • /
    • 2007
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA is larger than the calculated one when the area ratio is larger than 1. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure (실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sang-Hyun;Lee, Sung-Kyung;Min, Kyung-Won;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Joo, Seok-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.449-457
    • /
    • 2008
  • In this paper, a tuned liquid1) mass damper(TLMD) was proposed and experimentally investigated on its control performance, which can control bi-axial responses of building structures by using only one device. The proposed TLMD controls the structural response in a specific one direction by using a liquid sloshing of TLCD. Also, the TLMD reduces the response of structures in the other orthogonal direction by behaving as a TMD that uses mass of the container itself and liquid within container of TLCD installed on linear motion guides. Force-vibration tests on a real-sized structure installed with the TLMD were performed to verify its independent behavior in two orthogonal directions. Test results showed that the responses of a structure were considerably reduced by using the proposed TLMD and its usefulness for structural control in two orthogonal directions.

  • PDF

Proposition to Natural Frequency of Liquid Column Vibration Absorber with Vertical-Horizontal Area Ratio (수직-수평부 단면적비에 따른 동조액체기둥형 감쇠장치의 고유진동수 산정식 제안)

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan;Lee, Joung-Woo;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.653-658
    • /
    • 2008
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA has a different value compared with calculated one. The effective length($L_e$) was revised using by power equation. In the Case01 to 19, the standard deviation($s_r$) is 4.7292 and the coefficient of correlation(r) is 0.9856. In the Case21 to 61, the standard deviation ($s_r$) is 14.2143 and the coefficient of correlation(r) is 0.9935. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

Numerical assessment of seismic safety of liquid storage tanks and performance of base isolation system

  • Goudarzi, Mohammad Ali;Alimohammadi, Saeed
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.759-772
    • /
    • 2010
  • Seismic isolation is a well-known method to mitigate the earthquake effects on structures by increasing their fundamental natural periods at the expense of larger displacements in the structural system. In this paper, the seismic response of isolated and fixed base vertical, cylindrical, liquid storage tanks is investigated using a Finite Element Model (FEM), taking into account fluid-structure interaction effects. Three vertical, cylindrical tanks with different ratios of height to radius (H/R = 2.6, 1.0 and 0.3) are numerically analyzed and the results of response-history analysis, including base shear, overturning moment and free surface displacement are reported for isolated and non-isolated tanks. Isolated tanks equipped by lead rubber bearings isolators and the bearing are modeled by using a non-linear spring in FEM model. It is observed that the seismic isolation of liquid storage tanks is quite effective and the response of isolated tanks is significantly influenced by the system parameters such as their fundamental frequencies and the aspect ratio of the tanks. However, the base isolation does not significantly affect the surface wave height and even it can causes adverse effects on the free surface sloshing motion.

Proposition to Natural Frequency of Liquid Column Vibration Absorber with Vertical-horizontal Area Ratio (수직-수평부 단면적비에 따른 동조액체기둥형 감쇠장치의 고유진동수 산정식 제안)

  • Woo, Sung-Sik;Chung, Lan;Lee, Joung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA has a different value compared with calculated one. The effective length($L_e$) was revised using by power equation. In the case01 to 19, the standard deviation($S_r$) is 4.7292 and the coefficient of correlation(r) is 0.9856. In the case21 to 61, the standard deviation($S_r$) is 14.2143 and the coefficient of correlation(r) is 0.9935. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

Dynamic Response of Polyurethane Foam with Density and Temperature Effects (폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향)

  • Hwang, Byeong-Kwan;Kim, Jeong-Hyun;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure (실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sung-Kyung;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Joo, Seok-Jun;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-168
    • /
    • 2008
  • In this paper, a tuned liquid mass damper(TLMD) was proposed and experimentally investigated on its control performance, which can control bi-axial responses of building structures by using only one device. The proposed TLMD controls the structural response in a specific one direction by using a liquid sloshing of TLCD. Also, the TLMD reduces the response of structures in the other orthogonal direction by behaving as a TMD that uses mass of the container itself and liquid within container of TLCD installed on linear motion guides. Force-vibration tests on a real-sized structure installed with the TLMD were performed to verify its independent behavior in two orthogonal directions. Test results showed that the responses of a structure were considerably reduced by using the proposed TLMD and its usefulness for structural control in two orthogonal directions.

The Effect of Surface Tension on the Transient Free-Surface Flow near the Intersection Point (교차점 부근의 과도자유표면유동에 미치는 표면장력의 영향)

  • Lee, G.J.;Rhee, K.P.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.104-117
    • /
    • 1991
  • When a body starts to move, the flow near the intersection point between a body and a free surface changes violently and rapidly in a very short initial time interval. This flow phenomena must be investigated whenever one treats the interaction between a body and a fluid, such as the motion of a floating body, sloshing in a tank, wave maker problem, entry of a body into a fluid etc.. Until Roberts(1987), it was widely accepted that a singularity exists at the intersection point. However, he showed that the singularity does not exist if a body moves non-impulsively. In this paper, an analytical solution cosistent for the case of impulsive motion of a body is obtained by including the effect of surface tension. From the characteristics of the newly obtained solution, a critical value associated with an oscillating phenomenon is found, and further more, it is shown that the oscillating phenomenon does not appear in the region where the distance form the intersection point is less than this critical value.

  • PDF