Browse > Article
http://dx.doi.org/10.3744/SNAK.2019.56.4.291

Dynamic Response of Polyurethane Foam with Density and Temperature Effects  

Hwang, Byeong-Kwan (Department of Architecture and Ocean Engineering, Pusan National University)
Kim, Jeong-Hyun (Department of Architecture and Ocean Engineering, Pusan National University)
Kim, Jeong-Dae (Department of Architecture and Ocean Engineering, Pusan National University)
Lee, Jae-Myung (Department of Architecture and Ocean Engineering, Pusan National University)
Publication Information
Journal of the Society of Naval Architects of Korea / v.56, no.4, 2019 , pp. 291-297 More about this Journal
Abstract
Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.
Keywords
Polyurethane foam(PUF); Cryogenic test; Drop impact test; Dynamic response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gibson, L. J. & Ashby, M. F., 1999. Cellular solids: structure and properties. Cambridge university press.
2 Han, D. S., Park, I. B., Kim, M. H., Noh, B. J., Kim, W. S., & Lee, J. M., 2010. The effects of glass fiber reinforcement on the mechanical behavior of polyurethane foam. Journal of Mechanical Science and Technology, 24(1), pp.263-266.   DOI
3 Kim, J. M., Kim, J. H., Ahn, J. H., Kim, J. D., Park, S., Park, K. H., & Lee, J. M., 2018. Synthesis of nanoparticle-enhanced polyurethane foams and evaluation of mechanical characteristics. Composites Part B: Engineering, 136, pp.28-38.   DOI
4 Mane, J. V., Chandra, S., Sharma, S., Ali, H., Chavan, V. M., Manjunath, B. S. & Patel, R. J., 2017. Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates-an experimental study. Procedia engineering, 173, pp.726-731.   DOI
5 McGee, S. D., Batt, G. S., Gibert, J. M. & Darby, D. O., 2017. Predicting the effect of temperature on the shock absorption properties of polyethylene foam. Packaging Technology and Science, 30(8), pp.477-494.   DOI
6 Mozafari, H., Khatami, S., Molatefi, H., Crupi, V., Epasto, G. & Guglielmino, E., 2016. Finite element analysis of foam-filled honeycomb structures under impact loading and crashworthiness design. International journal of crashworthiness, 21(2), pp.148-160.   DOI
7 Park, S. B., Choi, S. W., Kim, J. H., Bang, C. S. & Lee, J. M., 2016. Effect of the blowing agent on the low-temperature mechanical properties of CO2-and HFC-245fa-blown glass-fiber-reinforced polyurethane foams. Composites Part B: Engineering, 93, pp.317-327.   DOI
8 Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, M. E. & Jeelani, S., 2005. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Materials Science and Engineering: A, 406(1-2), pp.328-336.   DOI
9 Taherkhani, A., Sadighi, M., Vanini, A. S. & Mahmoudabadi, M. Z., 2016. An experimental study of high-velocity impact on elastic-plastic crushable polyurethane foams. Aerospace Science And Technology, 50, pp.245-255.   DOI
10 Zaretsky, E., Asaf, Z., Ran, E. & Aizik, F., 2012. Impact response of high density flexible polyurethane foam. International Journal of Impact Engineering, 39(1), pp.1-7.   DOI
11 Zhang, Y., Liu, Q., He, Z., Zong, Z. & Fang, J., 2019. Dynamic impact response of aluminum honeycombs filled with expanded Polypropylene foam. Composites Part B: Engineering, 156, pp.17-27.   DOI