• Title/Summary/Keyword: Slope angle control

Search Result 93, Processing Time 0.022 seconds

PATH CONTROL FOR NONLINEAR VEHICLE MODELS (비선형 차량모델 모의 실험의 경로제어)

  • J.N. Lee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.383-387
    • /
    • 1996
  • This paper presents a steering control strategy applicable to vehicle path following problems. This control strategy is based on realistic nonlinear equations of motion of multibody systems described in terms of relative joint coordinates. The acceleration of the steering angle is selected as a control input of the system. This input is obtained by considering position and slope errors at current and at advance times. This steering control strategy is tested in circular and lane change maneuvers with a nonlinear vehicle model.

  • PDF

Platform Design of Caterpillar Typed Electrical Vehicle (궤도형 전기 차량의 플랫폼 설계)

  • Lee, Yong-Jun;Chang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a platform design of caterpillar typed electrical vehicle is proposed. Nowadays, there have been many researches on mobile robots in the various ways. Many different fields such as military, exploration, agricultural assistance and disaster relief have applied the mobile robot. Design condition of stable angle, upset angle is reflect to caterpillar typed electrical vehicle. To experiment, developed a caterpillar typed electrical vehicle and design a driving controller. Developed caterpillar typed electrical vehicle is tested about operating and driving. Test environment is consisted of driving on flatland and climbing 15 degree and outdoor 40 degree slope. It is confirmed that developed tracked electric vehicular robot can driving and climbing.

A Study of Dynamic Balance Control between Golfer and Non-golfer (골프 선수와 일반 성인의 동적 균형 제어에 대한 연구)

  • Park, Jun-Sung;Lim, Young-Tae;Lee, Jae-Woo;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Objective: The purpose of this study was to identify the effect of dynamic postural balance control against tilting platform between golfers and non-golfers. Method: 24 golfers and 26 non-golfers were participated. Eight motion capture cameras, two force plates, and one dynamic balance control platform were used for sensory perception test. It was performed two-way repeated ANOVA with a Bonferroni adjustment at a significant level of a 0.05. Results: Golfers' perception ability was higher than non-golfer according to slope. the CoP, time, angle variables were indicated main effect and interaction effect between golfer and non-golfer. Conclusion: It was known that golfer's proprioception perception ability was higher than non-golfers. Repeated practice such as shots and putting on the uneven ground might improve their balance control.

Automatic Left/Right Boom Angles Control System for Upland Field (전자용 붐방제기의 붐의 좌우 경사각 자동제어)

  • 이중용;김영주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.457-462
    • /
    • 2000
  • Boom sprayers have been known by their excellency in field efficiency worker’s safety and pest control efficacy. The boom sprayer in Korea that was developed for paddy field is not suitable for upland field of which shape is irregular and inclination is steep, due to heavy chemical tank long boom width and manual on-off control of spraying. The goal of the study was to develope a boom control system that could control boom angles of left and right boom automatically and independently corresponding to local field slope. The prime mover was selected as a cultivating tractor. Main results of this study were as follows. 1. Ultrasonic sensor whose response time was 0.1s and response angle was within $\pm$20$^{\circ}$was selected to measure distance. Voltage output of the sensor(X, Volt) had a highly significant linear relationship with the vertical distance between the sensor and ground surface(Y, mm) as follows; Y=0.0036X-0.437 2. Left and right section of the boom could be folded up by a position control device(on-off control) which could control the left and right boom independently corresponding to local slope by equalizing distances between the sensor and boom at the center and left/right boom. Most reliable DB(dead band) was experimentally selected to be 75$\Omega$(6cm). 3. At traveling velocity of 0.3~0.5m/s RMS of error between desired and achieved height was less than 4.5cm The developed boom angle controller and boom linkage system were evaluated to be successful in achieving the height control accuracy target of $\pm$10cm.

  • PDF

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Study on the Improvement of Accuracy in a Plain Slope Analysis Using the Bundle Adjustment (번들조정법에 의한 지상시설물 경사면 해석의 정확도 향상에 관한 연구)

  • 유복모;조기성;허두홍
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1989
  • In this study, improvement of accuracy in a plain slope analysis is a main object using the bundle adjustment with changing the convergent angles and the configurations of control points when we can't take convergent case because of poor environment around establishment and cultural assets. From converged photographing using the angle of deviation, it was possible to improve accuracy in a plain slope analysis.

  • PDF

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Static Walking Algorithm for a Quadruped Robot using Tilting (틸팅을 이용한 4족 보행 로봇의 정적 보행 알고리즘)

  • Lee, Sun-Geol;Jo, Chang-Hyeon;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.675-679
    • /
    • 2001
  • This paper presents walking algorithm for a quadruped robot that does not have an upper body. Tilting motion is added to the planned walking trajectory instead of using an extra body segment that is independent on walking trajectory. Area and tracking algorithms are proposed as tilting method and compared with that of off-line tilting and that of no tilting. Computer simulation shows that stability of tilted walking is more improved than that of the usual walking algorithm for general walking paths. It also shows that the tracking method guarantees stability and best mobility.

  • PDF

Asymmetrical Pulse Width Modulated AC Chopper to Improve the Input Power Factor (전원식 력술 향상을 위한 비대칭형 PWM고이쵸퍼)

  • 장도현;송종환;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1230-1241
    • /
    • 1991
  • Asymmetrical pulse width modulated(APWM) control technique for AC chopper is proposed which can improve the input power factor. The ideal switching function for the proposed technique is derived and its optimal slope to maintain the input power factor to unity is calculated. By digital simulation several characteristics are investigated theoretically and then compared with those of the conventional PWM and the phase angle control technique. In order to maintain the input power factor to unity the optimal slope and the average value of the ideal switching function are calculated. The experimental results show a good agreement with the calculated ones, which proves the feasibility of the proposed technique.

Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement (등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어)

  • Kwon, Young-Kuk;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.