• Title/Summary/Keyword: Slope Drainage

Search Result 298, Processing Time 0.029 seconds

Effect of Acid Drainage and Countermeasure about Road Cut Slope Environment (도로절개면 환경에 관한 산성배수의 영향과 대책)

  • 김진환;이종현;구호본;박미선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.481-484
    • /
    • 2003
  • Sulfide minerals contacted with air and water in coal seam cause oxidation reactions. This oxidation reactions make low pH of groundwater and surface water(Acid Drainage). The reddish brown precipitate collected from the cut slope of the study area was estimated using the X-Ray Diffractometer(XRD). XRD results show that the cut slope was affected by Acid Drainage. The cut slope exposured to Acid Drainage become weak about chemical weathering and defile the appearance of the road. Drainage facilities are very important in Cut Slope under Acid Drainage influence. Reactions between Coal seam and water cause chemical weathering and environmental problem. Therefore It is important to control the transfer paths of groundwater and surface water and to install water collecting facilities

  • PDF

Damage Conditions of the Slope Structures due to ARD (산성암반배수에 의한 사면구조물의 피해 현황)

  • Park, Sam-Gyu;Kim, Jae-Gon;Lee, Jin-Soo;Kim, Tong-Kwon;Ko, Kyung-Seok;Lee, Gyoo-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.878-883
    • /
    • 2005
  • This paper describes the effect of acid rock drainage(ARD) produced from the cut slope on the slope structures. Acid rock drainage is originated from a rock quarry located in coal mine zone and mineralization belt of Chosen Supergroup and Ogcheon group, andesite with the pyrite, and acid sulfate soils of Tertiary in Korea. The cut slope, where acid rock drainage comes out, almost has been constructed by shotcrete and planting works. According to the field observation results, in most cases, the acid rock drainage has an adverse effect on slope structures. The shotcrete, anchors and rock bolts produced corrosive action, and bad germination and growth diseases of covering plants of the slope planting construction due to ARD.

  • PDF

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

Analysis of Groundwater Level Reduction Effects to Burial Angle of Slope Reinforcement Materials (비탈면 보강재의 매설각에 따른 지하수위 저감효과 분석)

  • Hyeonjun Yoon;Sungyeol Lee;Wonjin Baek;Jaemo Kang;Jinyoung Kim;Hwabin, Ko
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.5-11
    • /
    • 2023
  • Due to frequent occurrences of concentrated heavy rainfall caused by abnormal climate conditions in recent years, collapses of steep slopes have been occurring frequently due to surface erosion and increased pore water pressure. Various methods are being applied to prevent slope collapses, such as increasing the resistance to movement and reducing pore water pressure. Research on these methods has been consistently conducted as they provide an efficient response to slope collapses by satisfying both the conditions of resistance to movement and pore water pressure simultaneously. Therefore, in this study, we propose an upward slope reinforcement method by burying drainage materials with an upward slope inclination, instead of the conventional horizontal application. This approach aims to satisfy both slope reinforcement and drainage functions effectively, offering a comprehensive solution for slope stabilization. Furthermore, to determine the optimal burial angle that exhibits the most effective reinforcement and drainage effects of the proposed method, we investigated the reinforcement and drainage effects under conditions where the horizontal drainage materials were set at angles ranging from 0° to 60° in increments of 10° on a representative cross-section. Additionally, indoor model experiments were conducted under the conditions of 40°, which showed the most outstanding drainage effect, and 20°, which exhibited the highest safety factor, to validate the numerical analysis results. The results showed that the burial angle of 40° exhibits a relatively higher drainage effect as with the numerical analysis results, while the angle of 20° results in inadequate drainage and observed slope collapse.

A Study on the Acid Drainage Neutralizing System for Ecological Vegetation on the Acid Drainage Slope (산성배수 비탈면의 생태적 녹화를 위한 산성배수 중화기법 연구)

  • Cho, Sung Rok;Shim, Sang Ryul;Kim, Jae Hwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Research was initiated to find out acid drainage neutralizing techniques for ecological vegetative growth on the acid drainage slope. Four different acid drainage neutralizing techniques [no treatment, limestone layer treatment, phosphate treatment, and limestone layer + phosphate treatment] were treated on the acid drainage slope. There was a significant difference observed in treated acid neutralizing techniques for acidity, surface coverage rate, death rate and plant root status. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: limestone layer + phosphate treatment, second: phosphate treatment, third: limestone layer treatment and fourth: no treatment]. The limestone layer and the phosphate treatments were effective for neutralizing acidity and vegetative growth, respectively. However, the phosphate treatment was more effective compared to the limestone layer treatment on the acid drainage slope. We figured out that the phosphate treatment is more effective for neutralizing acidity and vegetative growth because of coating effect of sulfides.

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

An Evaluation of Treatment Technologies for Anti-scale in Drainage Works Using Simulation Test of Road Tunnel (도로터널의 모사시험을 통한 배수공 스케일 억제 기술 평가)

  • Park, Eun-Hyung;Nam, Joong-Woo;Han, Yoon-Su;Kim, Hyun-Gi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.5-15
    • /
    • 2013
  • Clogging phenomenon is one of the important problems in deteriorated tunnels, and it caused inhibition of drainage system by long-term behavior. Clogging phenomenon is mainly composed of $CaCO_3$ in the form calcite. Calcite is generally created by the reaction of $Ca(OH)_2$ with $CO_2$ emitted from vehicles. The structure of deteriorated tunnels was simulated and the setting of outflow from drainage pipe was observed in this study. The test was experienced by changing the slope of drainage system because existing drainage system was pracitced almost below $5^{\circ}$. As a result, in case of drainage system's slope is $2^{\circ}$, Quantum Stick has an effect for prohibiting scale in drainage system, but magnetic treatment was not effective. As a result, in case of drainage system's slope is $5^{\circ}$, both technologies were effective for prohibiting scale in drainage system, but Quantum Stick was especially more effective than magnetic treatment.

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

Drainage Control and Prediction of Slope Stability by GIS-based Hydrological Modeling at the Large Scale Open Pit Mine (GIS에 의한 대규모 노천광에서의 배수처리 및 사면안정 예측)

  • SunWoo, Choon;Choi, Yo-Soon;Park, Hyeong-Dong;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.360-371
    • /
    • 2007
  • This paper presents an application of drainage control and slope stability by GIS-based hydrological modeling to control the surface water from an operational point of view. This study was carried out on a region of Pasir open-pit coal mine, Indonesia. A detailed topographical survey was performed at the study area to generate a reliable DEM (Digital Elevation Model). Hydrology tools implemented in ArcGIS 9.1 were used to extract the characteristics of drainage system such as flow direction, flow accumulation and catchment area from DEM. The results of hydrological modeling and spatial analysis showed that current arrangement of pumping facility is not suitable and some vulnerable places to erosion exist on the bench face due to concentrated surface runoff. Finally, some practical measures were suggested to optimize the design of drainage system and to monitor the slope stability by the surface water management at the study region during heavy rainfall.

A Study of Coarse Bed Materials in Small Streams in Rocky Mountains (로키 산맥 소하천의 조립질 하상 퇴적물에 관한 연구)

  • Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • This study surveyed intensively the relationships between grain size of coarse bed materials and some principal factors in channel system, drainage area and channel slope, in Rocky Mountains. The result of this research shows that there are statistically significant relationships between these factors. Generally, the grain size and the channel slope exponentially decreased in the study area with the increase in drainage area. However, there are great differences in grain size and channel slope between upstream and downstream channels. The boundary lines are commonly located at near the mouth of canyon. From these results, it can be concluded that the bed material characteristics and the channel slope are strongly influenced by the geological and geomorphological background of the drainage basin in this study area.

  • PDF