• Title/Summary/Keyword: Slip conditions

Search Result 474, Processing Time 0.025 seconds

A Study on Integrated Control of AFS and ARS Using Fuzzy Logic Control Method (Fuzzy Logic 제어를 이용한 AFS와 ARS의 통합제어에 관한 연구)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • An Integrated Dynamics Control system with four wheel Steering (IDCS) is proposed and analysed in this study. It integrates and controls steer angle of front and rear wheel simultaneously to enhance lateral stability and steerability. An active front steer (AFS) system and an active rear steer (ARS) system are also developed to compare their performances. The systems are evaluated during brake maneuver and several road conditions are used to test the performances. The results showed that IDCS vehicle follows the reference yaw rate and reduces side slip angle very well. AFS and ARS vehicles track the reference yaw rate but they can not reduce side slip angle. On split-${\mu}$ road, IDCS controller forces the vehicle to go straight ahead but AFS and ARS vehicles show lateral deviation from centerline.

The slip & slide simulator for train using induction motors (유도전동기를 이용한 열차의 공전활주 모의 시험기)

  • Byun, Yeun-Sub;Kim, Min-Soo;Lee, Young-Hoon;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1879-1880
    • /
    • 2006
  • In electric motor coaches, when the adhesion force between rail and driving wheel decreases suddenly, the electric motor coach has slip phenomena. The characteristics of adhesion force coefficient is strongly affected by the conditions between rails and driving wheels, such as moisture, dust, and oil on the rails and so on. This paper proposes the simulation system for slip & slide test using virtual train. We can easily research the adhesion characteristics and adhesion control method with this equipment under the sudden variation of the adhesion force coefficient.

  • PDF

A Study of Adhesive Effect Estimation using Anti-slip Control Algorithm (Anti-slip 제어 알고리즘을 이용한 접착력 추정에 관한 연구)

  • Kim Gil-Dong;Ahn Tae-Ki;Lee Woo-Dong;Lee Ho-Yong;Park Seo-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.626-631
    • /
    • 2004
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

The history of slip and fall accidents

  • Son, D.H.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 1990
  • Recorded injury identified the role of falls in producing injury througout all segments of the nation. The Economic and social costs arising from falls has been established in numerous sources, both nationally and from the intermational literature. Recorded injury also indicated the potential features of falls, the need for a basic understanding of the energy exchange mechanism involved and the subsequent rehabilitation processes required. It appears unlikely that any other major cause of injury has an etiology so little researched and consequently, so little understood, which in turn has prevented the development of an intervention strategy or a scientically based control technology of falls. This paper will emphasize how the postural changes of foot are related to slip/fall severity in different environmental conditions. Lidewise, we will examine the whole slip/fall cycle through the biomechanical parameters involved in a range of walking speed and floor slipperiness

  • PDF

Fall arresting system

  • Leamon, T.S.;Malone, C.;Son, D.H.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • A major inhibition of past work in a slip/fall accident study has been due to the lack of a facility and a methodology to experimentally investigate such behavior without expowting human subjects to the natural danger of injury resulting from a fall. In order to carry out a slip/fall research, a unique facility must be created specially to investigate falling and slipping behavior. One component of this facility will be used to focus a research towards experimental investigations of the basic mechanisms involved in falls. Especially, this compo- nent must be designed, developed, and fabricated to provide passive, reactive support at the point of loss of ba- lance. This component must allow both normal and reduced friction surfaces to be designated to investigate human falling in the experimental conditions. This study will address how a fall arresting system was designed and it would be implemented in actual case of a slip/fall study.

  • PDF

Anti-Slip Control and Speed Sensor-less Vector Control of the Railway Vehicle (철도차량의 Anti-Slip 제어 및 속도센서리스 벡터제어)

  • Jho Jeong-Min;Kim Gil-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.216-221
    • /
    • 2005
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the wright of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed re-adhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Doctor Blade Tape Casting of In-based Low Melting Point Alloy (In 계 저융점합금의 닥터 블레이드 테이프캐스팅)

  • Youn, Ki-Byoung
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.