• 제목/요약/키워드: Sliding-mode Control

검색결과 1,387건 처리시간 0.027초

불확실한 비선형 시스템의 퍼지 슬라이딩모드 제어기 설계 (Design of a Fuzzy-Sliding Mode Controller for an Uncertain Nonlinear System)

  • 허성회;박귀태;김권호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2290-2292
    • /
    • 2000
  • Robustness characteristics to the modelling imprecision and some disturbances could be achieved in sliding mode control. However, there are drawbacks such as discontinuous control and chattering. Recently, many researches have been developing to solve such the problems. In sliding mode control, overall control input could be divided into two parts which are equivalent control input and sliding mode control input. Sliding mode control input is a function of the switching surfaces and can be designed with their linear combinations. In this paper, the sliding mode control input is designed by TSK fuzzy model. The proposed method gives the continuous sliding control input and reject the chattering phenomenon.

  • PDF

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상 (Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer)

  • 김홍열;손주범;이장명
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계 (Discrete-Time Sliding Mode Controller Design for Scanner system)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

로봇 매니퓰레이터를 위한 퍼지 이동슬라이딩 모드 제어 (Fuzzy Moving Sliding Model Control for Robotic Manipulators)

  • 전경한;최봉일
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.597-604
    • /
    • 2001
  • Recently, the study of the moving sliding mode in the variable structure control is in progress ac-tively. The conventional time-invariant sliding model control can\`t guarantee the sliding mode in the reaching phase, which is robust against the uncertainty. But with the time-varying method, the controller makes the states track the desired trajectories and keeps the sliding mode. Nevertheless, the piecewise continuous method of the past still has the reaching mode. Thus we propose the continuously moving sliding surface by the fuzzy algorithm. The proposed algorithm is made of the fuzzy rule considering both the error and the error velocity, and may apply to the entire phase plane without sacrificing sliding mode. Especially the proposed scheme can rotate tot he slope-decreasing direction, needless to say rotating to the slope-increasing direction. For showing that the proposed controller guarantees the sliding model and ensures the robustness, we apply the proposed method to the two-link robot manipulator simulation.

  • PDF

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

A fuzzy Sliding Mode Control of Wheeled Mobile Robot with a Differential Drive

  • Kang, Young-Hoon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.265-270
    • /
    • 1998
  • In this paper we introduce a modeling of wheeled mobile robot with a differential drive derived by R.M. DeSantis and using the dynamics model-ing with some disturbance term we control the wheeled mobile robot using fuzzy sliding mode control(FSMC) method. In a fuzzy control approach it is very difficult to prove the stability of the fuzzy controller. Therefore, to overcome that difficult proof of the stability in a fuzzy control method, we first propose a sliding mode controller and prove the stability of the proposed controller. Next, transforming the proposed sliding mode controller into a fuzzy sliding mode controller without changing the basic structure of the sliding mode con-troller, we easily obtain a fuzzy sliding mode con-troller(FSMC) whose stability is guaranteed with-out difficult stability proof procedure of the proposed FSMC.

  • PDF

슬라이딩 모드 제어에 의한 불확정성을 가진 대규모 시간지연 선형 계통의 강인 분산 안정화 (Robust Decentralized Stabilization of Large-Scale Time-Delayed Linear Systems with Uncertainties via Sliding Mode Control)

  • 박장환;유정웅
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.139-144
    • /
    • 1999
  • The present paper is concerned with the robust decentralized stabilization problem of large-scale systems with time delays in the interconnections using sliding mode control. Based on Lyapunov stability theorem and H$_{\infty}$ theory, an existence condition of the sliding mode and a robust decentralized sliding mode controller are newly derived for large-scale systems under mismatched uncertainties. Finally, a numerical example is given to verify the validity of the results developed in this paper.

  • PDF

자기베어링계에서 외란 관측기를 갖는 슬라이딩모드 제어 (Sliding Mode Control with Disturbance Observer for An Active Magnetic Bearing System)

  • 강민식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.408-414
    • /
    • 2004
  • In this paper, a disturbance observer based sliding mode control is proposed to attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. An algorithm which decouples disturbance observation dynamics from sliding mode dynamics is suggested. This algorithm preserves the robustness of the sliding mode control and satisfies reachability condition in the presence of external disturbance and parameter uncertainties. Along with experimental results, it is shown that the proposed control is effective in disturbance rejection without any additive disturbance measurement.