• 제목/요약/키워드: Sliding acceleration

검색결과 122건 처리시간 0.026초

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

발수코팅된 표면에서의 수적의 동적 전락거동 (Dynamic Sliding Behavior of Water Droplets on the Coated Hydrophobic Surfaces)

  • 송정환;중도장
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.569-573
    • /
    • 2007
  • The static and dynamic hydrophobicities of the water droplets placed on a hydrophobic surface coated using a fluoroalkylsilanes monolayer with different molecular chain lengths were investigated through direct observation of the actual droplet motion during the sliding process. The surface roughness of both was found to be less than 1 nm. The static contact angles of the coated FAS-3 and FAS-17 were respectively $80^{\circ}$ and $108^{\circ}$ at $150^{\circ}C$, 1 h. The slope of sliding acceleration against the water droplet mass exhibited an inflection point, thus suggesting the switching of the dominant sliding mode from slipping to rolling. While their sliding angles were similar in value, notable differences were exhibited in terms of their sliding behavior. This can be understood as being due to the contribution of the shear stress difference at the interface between the solid surface and water during the sliding process. These results show that the sliding acceleration of the water droplets depends strongly on the balance between gravitational and retentive forces on the hydrophobic surface.

슬라이딩 제어기법을 이용한 교류 서보 시스템의 속도제어 (Speed control of AC servo system using a sliding control techniques)

  • 이제희;허욱열
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.115-120
    • /
    • 1996
  • In this paper, a sliding mode controller which is characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to the continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary for the sliding plane is estimated by an obsever. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed scheme is demonstrated through experimental works.

  • PDF

사용후핵연료 저장용기의 지진시 활동거동 (Sliding Response of Spent Fuel Storage Cask to Earthquake)

  • 최인길;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.70-77
    • /
    • 1996
  • In this study, sliding response analysis of free standing structure such as multi-purpose nuclear spent fuel storage cask is peformed. The governing factors of sliding response are aspect ratio of structure and ground acceleration. The vertical acceleration component is very important factor in the sliding response of the structure. Based on the mathematical model, computer program is developed using direct forward integration method to predict the sliding response. Using the program, several parametric studies were made for sinusodial ground motion and for El Centre 1940 earthquake and Mexico 1973 earthquake. From the results, it is known that the frequency content and duration of strong motion affect the sliding of the structure.

  • PDF

슬라이딩 모드 관측기를 이용한 로봇 매니퓰레이터를 위한 슬라이딩 모드 제어기의 개발 (Development of sliding mode controller for robot manipulators using sliding mode observer)

  • 박강박;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.289-292
    • /
    • 1997
  • In this paper, a continuous sliding mode controller for robot manipualator is proposed. The proposed scheme guarantees that the tracking error converges to zero maintaining the smoothness of the actual control signal. In order to estimate the acceleration data, a sliding mode observer is used, and the stability of the closed-loop system is shown.

  • PDF

Seismic vulnerability of sliding isolation concrete rectangular liquid storage tanks

  • Cheng, Xuansheng;Yin, Siyuan;Chen, Wenjun;Jing, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.503-515
    • /
    • 2022
  • Based on the sliding isolation concrete LSS (liquid-storage structure), the specific seismic vulnerability is analyzed according to the general failure mode. In this study, 12 seismic inputs with different characteristics are used, and their acceleration peak values are modulated. By inputting these waves to the sliding isolation concrete storage structure, the finite-element models of different concrete rectangular LSSs are obtained and analyzed, and the failure probabilities are obtained according to the IDA (incremental dynamic analysis) curves of the structure. The results show that when the seismic acceleration peak value gradually increases from 0.1 g to 1.0 g, the failure probability of LSS gradually increases with the increase in friction coefficient. However, the failure probability of a sliding isolation LSS is less than 100% and far less than the failure probability of a non-isolated rectangular LSS, which shows that an isolated liquid storage structure continues working under a big earthquake. Thus, the sliding isolation for the concrete LSS has a significant damping effect.

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.

슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘 (Kinematic Model based Predictive Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer)

  • 오광석;이경수
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.931-940
    • /
    • 2017
  • 본 논문은 슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘에 관한 연구이다. 자율주행 자동차는 안전한 주행을 위해 신뢰성이 확보된 주행 환경 정보와 차량의 동적상태 정보가 필요하다. 센서 정보의 신뢰성 판단을 위해 본 연구에서는 종방향 기구학 모델기반 슬라이딩모드 관측기를 이용하여 종방향 환경정보와 차량 가속도 정보를 실시간으로 상호 보완적 고장진단이 가능한 예견 알고리즘을 제안하였다. 적용된 슬라이딩 모드 관측기는 종방향 환경정보의 고장신호에도 강건한 입력신호 재건성능을 보이면서 알고리즘의 신뢰성을 확보할 수 있었다. 예견 고장진단 알고리즘의 합리적 성능평가를 위해 네 가지 조건에 대한 실제 주행 데이터 기반 선행차량 추종시나리오를 적용하였다. 성능평가 결과 본 연구에서 제안된 예견 고장진단 알고리즘은 모든 평가조건과 주행 시나리오에 대해 합리적인 고장진단 성능을 보여주었다.

종방향 자율주행의 미지 고장 재건을 위한 순환 최소 자승 기반 적응형 슬라이딩 모드 관측기 개발 (Development of a RLS based Adaptive Sliding Mode Observer for Unknown Fault Reconstruction of Longitudinal Autonomous Driving)

  • 오세찬;송태준;이종민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.14-25
    • /
    • 2021
  • This paper presents a RLS based adaptive sliding mode observer (A-SMO) for unknown fault reconstruction in longitudinal autonomous driving. Securing the functional safety of autonomous vehicles from unexpected faults of sensors is essential for avoidance of fatal accidents. Because the magnitude and type of the faults cannot be known exactly, the RLS based A-SMO for unknown acceleration fault reconstruction has been designed with relationship function in this study. It is assumed that longitudinal acceleration of preceding vehicle can be obtained by using the V2V (Vehicle to Vehicle) communication. The kinematic model that represents relative relation between subject and preceding vehicles has been used for fault reconstruction. In order to reconstruct fault signal in acceleration, the magnitude of the injection term has been adjusted by adaptation rule designed based on MIT rule. The proposed A-SMO in this study was developed in Matlab/Simulink environment. Performance evaluation has been conducted using the commercial software (CarMaker) with car-following scenario and evaluation results show that maximum reconstruction error ratios exist within range of ±10%.