Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.11.569

Dynamic Sliding Behavior of Water Droplets on the Coated Hydrophobic Surfaces  

Song, Jeong-Hwan (Dept. of Information and Electronic Materials Engineering, PaiChai University)
Nakajima, Akira (Dept. of Metallurgy and Ceramic Science, Tokyo Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.17, no.11, 2007 , pp. 569-573 More about this Journal
Abstract
The static and dynamic hydrophobicities of the water droplets placed on a hydrophobic surface coated using a fluoroalkylsilanes monolayer with different molecular chain lengths were investigated through direct observation of the actual droplet motion during the sliding process. The surface roughness of both was found to be less than 1 nm. The static contact angles of the coated FAS-3 and FAS-17 were respectively $80^{\circ}$ and $108^{\circ}$ at $150^{\circ}C$, 1 h. The slope of sliding acceleration against the water droplet mass exhibited an inflection point, thus suggesting the switching of the dominant sliding mode from slipping to rolling. While their sliding angles were similar in value, notable differences were exhibited in terms of their sliding behavior. This can be understood as being due to the contribution of the shear stress difference at the interface between the solid surface and water during the sliding process. These results show that the sliding acceleration of the water droplets depends strongly on the balance between gravitational and retentive forces on the hydrophobic surface.
Keywords
Sliding behavior; Hydrophobic surface; Fluoroalkylsilane; Sliding acceleration;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 O. Takai, A. Hozumi, Y. Inoue and T. Komori, Bull. Mater. Sci., 20, 817 (1997)   DOI
2 H. Murase, K. Nanishi, H. Kogure, T. Fujibayashi, K. Tamura and N. Haruta, J. Appl. Polym. Sci., 54, 2051 (1994)   DOI   ScienceOn
3 A. Carre and M.E.R. Shanahan, J. Adhes., 49, 177 (1995)   DOI   ScienceOn
4 J. P. Youngblood and T. J. McCarthy, Macromolecules, 32, 6800 (1999)   DOI   ScienceOn
5 N. Yoshida, Y. Abe, H. Shigeta, A. Nakajima, H. Ohsaki, K. Hashimoto and T. Watanabe, J. Am. Chem. Soc., 128, 743 (2006)   DOI   ScienceOn
6 K. Honda, M. Morita, H. Otsuka and A. Takahara, Macromolecules, 38, 5699 (2005)   DOI   ScienceOn
7 P. L. Nostro, Adv. Colloid. Interf. Sci., 56, 245 (1995)   DOI   ScienceOn
8 R. N. Wenzel, J. Phys. Colloid Chem., 53, 1466 (1949)   DOI
9 N. Ogawa, M. Soga, Y. Takada and I. Nakayama, Jpn, J. Appl. Phys., 32, 614 (1993)   DOI
10 K. Tsujii, T. Yamamoto, T. Onda and S. Shibuichi, Angew. Chem. Int. Ed. Engl., 36, 1011 (1997)   DOI   ScienceOn
11 M. Miwa, A. Nakajima, A. Fujishirna, K. Hashimoto and T. Watanabe, Langmuir, 16, 5754 (2000)   DOI   ScienceOn
12 T. Nishino, M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda, Langmuir, 15, 4321 (1999)   DOI   ScienceOn
13 W. A. Zisman, Ind. Eng. Chem., 55, 19 (1963)   DOI
14 R. E. Baier and P. E. Meyer, Chemtech, 16, 178 (1986)
15 G. Yamauchi, K. Takai and H. Saito, IEICE Trans. Electron., E83-C, 1139 (2000)
16 M. Morra, E. Occhiello and F. Garbassi, Langmuir, 5, 872 (1989)   DOI
17 R. E. Johnson Jr. and R. H. Dettre, Surface and Colloid Science, Vol. 2, p. 85, ed. E. Matijevic, Wiley, New York, (1969)
18 E. Wolfram and R. Faust, Wetting, Spreading and Adhesion, p. 213, ed. J. F. Paddy, Academic Press Inc., New York, (1978)
19 A. Nakajima, S. Suzuki, Y. Kameshima, N. Yoshida, T. Watanabe and K. Okada, Chem. Lett., 32, 1148 (2003)   DOI   ScienceOn
20 D. Richard and D. Quere, Europhys. Lett., 48, 286 (1999)   DOI   ScienceOn
21 M. Sakai, A. Hashimoto, N. Yoshida, S. Suzuki, Y. Kameshima and A. Nakajima, Rev. Sci. Instrum., 78, 045103 (2007)   DOI   ScienceOn
22 D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969)   DOI