• Title/Summary/Keyword: Slide Motion

Search Result 69, Processing Time 0.028 seconds

A Motion Analysis Study of Casers for Fish Boxes using Computer Simulation (컴퓨터 시뮬레이션을 이용한 어체 상자 제함기 동작 분석에 관한 연구)

  • Jung, Sung-Heon;Jun, Chul-Woong;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.56-61
    • /
    • 2019
  • In this country, mackerel landing, sorting, and packing are mostly performed manually, which is time consuming and labor intensive. An unloading automation system saves time and labor by automating the landing, sorting, and packing processes. Casers are devices for manufacturing packing boxes for fish used by unloading automation systems. The caser design in this study is for mackerel packing boxes. This caser makes a packing box based on a press using the caser's slide crank. When the caser makes a packing box, the manufacturing sequence is determined by the caser's production guide and assisting rod. The caser design in this study is simulated using a multi-body dynamics program. The simulation is used to analyze the caser and to visualize the box-making sequence.

Rolling Test Simulation of Sea Transport of Spent Nuclear Fuel Under Normal Transport Conditions

  • JaeHoon Lim;Woo-seok Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.439-450
    • /
    • 2023
  • In this study, the impact load resulting from collision with the fuel rods of surrogate spent nuclear fuel (SNF) assemblies was measured during a rolling test based on an analysis of the data from surrogate SNF-loaded sea transportation tests. Unfortunately, during the sea transportation tests, excessive rolling motion occurred on the ship during the test, causing the assemblies to slip and collide with the canister. Hence, we designed and conducted a separate test to simulate rolling in sea transportation to determine whether such impact loads can occur under normal conditions of SNF transport, with the test conditions for the fuel assembly to slide within the basket experimentally determined. Rolling tests were conducted while varying the rolling angle and frequency to determine the angles and frequencies at which the assemblies experienced slippage. The test results show that slippage of SNF assemblies can occur at angles of approximately 14° or greater because of rolling motion, which can generate impact loads. However, this result exceeds the conditions under which a vessel can depart for coastal navigation, thus deviating from the normal conditions required for SNF transport. Consequently, it is not necessary to consider such loads when evaluating the integrity of SNFs under normal transportation conditions.

A Numerical Study on the emission Characteristics of DI Diesel Engine by Wall Impingement of Spray (벽면 충돌 분사에 의한 DI디젤엔진 배기가스 특성의 수치해석적 연구)

  • 최성훈;황상순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.97-105
    • /
    • 1998
  • High pressure injection is recently used to reduce the emissions and increase the power of DI diesel engine. This high pressure injection makes the spray strike the cylinder wall. This spray/wall impingement is known to affect the emission and performance of DI diesel engine such that it is very important to know the spray/wall impingement process. In this study, multidimensional computer program KIVA-II was used to clarify the effect of spray wall impingement by different injection spray angle with the spray/wall impingement model consiedering rebound and slide motion and also the improved submodel for liquid breakup, drop distortion model.

  • PDF

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • ;L. L. Koss
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.274-280
    • /
    • 2003
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they can be utilized to design efficient low frequency shakers.

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • Lee, Gun-Myung;Koss, L.L.;Lee, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.182-186
    • /
    • 2002
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker. The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they will be utilized to design efficient low frequency shakers.

  • PDF

Molecular Dynamics Study on Property Change of CMP Process by Pad Hardness (CMP 공정에서 연마패드 경도에 따른 연마 특성 변화 분자동력학 연구)

  • Kwon, Oh Kuen;Choi, Tae Ho;Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • We investigated the wearable dynamics of diamond spherical abrasive during the substrate surface polishing under the pad compression via classical molecular dynamics modeling. We performed three-dimensional molecular dynamics simulations using the Morse potential functions for the copper substrate and the Tersoff potential function for the diamond abrasive. The pad hardness had a big impact on the wearable dynamics of the abrasive. The moving speed of the abrasive decreased with increasing hardness of the pad. As the hardness decreased, the abrasive was indented into the pad and then the sliding motion of the abrasive was increased. So the pad hardness was greatly influenced on the slide-to-roll ratio as well as the wearable rate.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

Development of Real Time Monitoring and Forecasting/Emergency System for Land Slide of Road

  • Kim, Choon-Sik;Yoon, Soo-Ho;Shin, Seung-Mok;Hur Chul;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.150.1-150
    • /
    • 2001
  • This paper introduces a real time inspecting and monitoring system by using wireless communication and image processing technique. The communication system is developed by using 80c196kc microprocessor and it has data acquisition function for several kinds of sensors such as pluviometer, temperature, tension meter, elinometer and so on. The image processing method adopts Lalacian of Gaussian operator and least square method to extract line features for the captured images and uses a relaxation matching algorithm based in global structure constraint satisfaction to distinguish the matching error for those features. When the algorithm is processed, motion parameters of displacement area and its direction are computed. Once movement is recognized ...

  • PDF

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

Study on the moving device of press machine for forming impact reduction (성형충격 저감을 위한 프레스 구동기구에 관한 연구)

  • Kim, Jeong-Eon;Hong, Seok-Kwan;Kim, Jong-Deok;Heo, Young-Moo;Cho, Chong-Du;Kang, Jeong-Jin
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2008
  • In the sheet metal forming using a high speed press machine, driving device, such as crank, link, and knuckle mechanism, has to be designed in consideration of impact at a moment when press die contact with material, because the impact affects a dimensional accuracy of products and a life span of press die. In this study, dynamic analysis was performed using numerical simulation in order to verify the impact reduction effect for proposed double knuckle mechanism by estimating rolling and pitching moment of slide.

  • PDF