• 제목/요약/키워드: Slave robots

검색결과 31건 처리시간 0.021초

의료로봇의 현재와 미래: 수술로봇을 중심으로 (The Present and Future of Medical Robots: Focused on Surgical Robots)

  • 송미옥;조용진
    • 디지털융복합연구
    • /
    • 제19권4호
    • /
    • pp.349-353
    • /
    • 2021
  • 본 연구는 4차혁명 시대에 수술로봇에 대한 선행연구를 바탕으로 수술로봇의 현황을 분석하고, 향후 수술로봇이 나아가야 할 방향에 대해 전망하고자 시도된 고찰 연구이다. 수술로봇은 '다빈치' 로봇 출시 이후 본격적인 발전이 이루어졌으며, 현재까지는 수술로봇이 의료진의 의도를 반영한 마스터-슬레이브(Master-Slave) 방식이나 의료진의 수술을 보조하는 역할을 수행하고 있다. 최근 수술로봇에 인공지능과 빅데이터를 접목하고, 수술 전용 플랫폼이 아닌 범용성 플랫폼 상용화를 위해 기술이 개발되고 있다. 더욱이, 진단 영상자료를 바탕으로 한 3D 영상 자료 생성, vision probe를 통한 실시간 영상 제공, 영상자료를 하나의 시스템 내로 통합하여 수술로봇 자동화를 위한 기술이 개발되고 있다. 수술로봇의 발전을 위해서는 임상가와 공학자와의 긴밀한 협력, 수술로봇 기술 대한 안전관리, 수술로봇 활용을 위한 제도적 뒷받침이 필요할 것이다.

Master/Slave형 로봇 손의 설계 및 제어에 관한 연구 (A Stydy on the Design and Control of Master/Slave Type Robot Hand))

  • 문희형;권대갑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.390-394
    • /
    • 1994
  • In many cases, tasks are unpredictable and therefore not doable by special-purpose or pro-programble robots. So master/slave type robot hands which combine human perceptions with conventional robot hands are required as robot end effector. These also can be applied to hazardous worksites such as outer space, deep sea and nuclear power plant. In this study, master/slave type robot fingers with 3 joints each are designed and constructed. To control force accurately, TDT(tension difference type) torque sensors are constructed and attached toeachjoints of slave finger and new force reflecting control algorithm is suggested. Finally, experimental results show that the new control algorithm can be successfully applied.

  • PDF

다수 로봇간 공간궤적 동기화를 위한 모션계획 알고리즘 (A Motion Planning Algorithm for Synchronizing Spatial Trajectories of Multi-Robots)

  • 정영도;김성락;이충동;임현규
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1233-1240
    • /
    • 2004
  • Recently the need for cooperative control among robots is increasing in a variety of industrial robot applications. Such a control framework enhances the efficiency of the real robotic assembly environment along with extending the robot application. In this paper, an ethernet-based cooperative control framework was proposed. The cooperative control of robots can multiply the handling capacity of robot system, and make it possible to implement jigless cooperation, due to realization of trajectory-synchronized movement between a master robot and slave robots. Coordinate transformation was used to relate among robots in a common coordinate. An optimized ethernet protocol of HiNet was developed to maximize the speed of communication and to minimize the error of synchronous movement. The proposed algorithm and optimization of network protocol was tested in several class of robots.

Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계 (Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System)

  • 이운규;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

최소침습수술용 로봇의 안전성을 위한 제어 및 HMI 개발 (Development of Control and HMI for Safe Robot Assisted Minimally Invasive Surgery)

  • 정회주;송현종;박장우;박신석
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1048-1053
    • /
    • 2011
  • Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.

LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계 (Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제25권2_2호
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

오픈소스 기반의 실시간 EtherCAT 제어 시스템의 구현 (Implementation of Real-time EtherCAT Control System based on Open Source)

  • 경윤진;최동일
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.281-284
    • /
    • 2023
  • Real-time control communication network system is important for developing defense robots because it affects environmental interaction, performance, and safety. We propose a real-time control communication network using the Xenomai real-time operating system and the open-source EtherCAT master library, SOEM. EtherCAT is an Ethernet-based industrial communication method. It has low latency and many functions such as cable redundancy and distributed clock synchronization. We use Xenomai RTOS and Intel NUC to develop the system. Experimental tests demonstrate the Real-time EtherCAT master implementation, and communication with CiA301-based slave devices. The jitter measurement was conducted to validate the real-time performance of the system. The proposed system shows possibility for real-time robotics applications in various defense robots.

복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제- (Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain)

  • 유범상
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF