• 제목/요약/키워드: Sky-hook Algorithm

검색결과 24건 처리시간 0.024초

스카이-훅 제어를 이용한 반능동 현가식 운전석의 승차감 해석 (Ride Analysis of A Semi-Active Suspension Seat with Sky-Hook Control)

  • 강태호;백운경
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.33-39
    • /
    • 2002
  • Commercial vehicles are mostly subjected to relatively rougher ground environment than passenger vehicles. Many driver's seats of commercial vehicles have suspension system with spring and dampers. Then, impact or vibrative forces transmitted from the vehicle to the driver can be attenuated. This study deals with a ride evaluation method using sky-hook control algorithm for the suspension dampers. Vibration amplitude transmissibilities were compared between passive dampers and semi-active dampers with sky-hook control method.

  • PDF

1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가 (Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System)

  • 윤일중;임재필;신휘범;이진규;신민재
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

궤도차량용 반능동 현수장치 성능특성에 관한 연구 (A Study on Performance Characteristics of Semi-Active Suspension System of Tracked Vehicle)

  • 김병운;이윤복;강이석
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.9-20
    • /
    • 2003
  • In this study, the performance of a semi-active suspension system for heavy duty tracked vehicles has been investigated. To this end, continuous and on-off Sky-Hook control law have been evaluated for a 1/4 car model. Simulation results show that the semi-active suspension system has potential to improve ride quality of the vehicle. And we proposed a method for improving of variable damper performance.

연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기 (High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper)

  • 최주용
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

현가장치의 성능향상을 위한 지능형 제어로직에 관한 연구 (A Study on the Knowledge Based Control Algorithm for Performance Improvement of the Automotive Suspension System)

  • 소상균;변기식
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.87-92
    • /
    • 2001
  • Automotive suspension system is a mechanism for isolation of the vibration coming from the road inputs. Recently, the electronically controlled suspension systems which may improve ride and handling performance have been developed. Here, the continuously controlled semi-active suspension system is focused. As a mechanism to control damping forces continuously, a solenoid valve is used. The modeling for the solenoid valve is introduced briefly, a vehicle dynamics modeling is constructed, and then combined system model is completed. To design the efficient control algorithm for the semiactive suspension system the knowledge based fuzzy logic is applied and the technique how to apply the sky-hook theory to the fuzzy logic is developed. Finally, to confirm the improvement of performance the computer simulation is carried out.

  • PDF

ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가 (Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation)

  • 백운경;이지웅;이종석
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.

가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션 (Control simulation of MR damper for a cruise bus including the virtual dynamic damper)

  • 박성준;손정현
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.

상용 MR 댐퍼를 이용한 반능동형 착륙장치 낙하실험 (Drop Test Simulation of semi-active Landing Gear using Commercial Magneto-Rheological Damper)

  • 황재업;황재혁;배재성;임경호
    • 항공우주시스템공학회지
    • /
    • 제4권4호
    • /
    • pp.44-48
    • /
    • 2010
  • This paper is used the commercial magneto-rheological(MR) damper for landing gear. The damping characteristics of Commercial MR damper by changing the intensity of the magnetic field are investigated and the dynamic responses of the landing gear. it is set up tset equipment, the landing gear drop test system. The landing gear involved drop testing the gear. The landing gear is tested by implementing sky-hook control algorithm and its performance is evaluated comparing to the result.

  • PDF

200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰 (Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load)

  • 정우진;정의봉;홍성룡;최승복
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

슬라이딩 섭동 관측기를 이용한 에어셀과 반능동 서스펜션의 통합 제어 (Integration Control of Air-Cell Seat and Semi-active Suspension Using Sliding Perturbation Observer Design)

  • 유기성;윤정주;이민철;유완석
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.159-169
    • /
    • 2004
  • In this study, integration control of air-cell seat and semi-active suspension is proposed to minimize the road-tyre force which can cause uncomfortable feeling to rider. The proposed integration control with sliding perturbation observer is consisted of air-cell seat control which uses the force generated by air-cell and the sky-hook control. The air-cell seat itself has been modeled as a 1 degree of freedom spring-damper system. The actual characteristics of the air-cell have been analyzed through experiments. In this paper, we introduces a new robust motion control algorithm using partial state feedback for a nonlinear system with modelling uncertainties and external disturbances. The major contribution of this work is the development and design of robust observer for the state and the perturbation. The combination skyhook controller and air-cell controller using the observer improves control performance, because of the robust routine called Sliding Observer Design for Integration Control of Air-Cell Seat and Semi-active Suspension. The simulation results show a high accuracy and a good performance.