• Title/Summary/Keyword: Skin tumor

Search Result 670, Processing Time 0.027 seconds

Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo

  • Ahn, Eun-Hee;Kim, Dae-Won;Kim, Duk-Soo;Woo, Su-Jung;Kim, Hye-Ri;Kim, Joon;Lim, Soon-Sung;Kang, Tae-Cheon;Kim, Dong-Joon;Suk, Ki-Tae;Park, Jin-Seu;Luo, Qiuxiang;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.329-334
    • /
    • 2011
  • Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1${\beta}$, and tumor necrosis factor-${\alpha}$. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases.

Efficacy and Survival-associated Factors with Gefitinib Combined with Cisplatin and Gemcitabine for Advanced Non-small Cell Lung Cancer

  • Fang, Hong;Lin, Rong-Yan;Sun, Ming-Xia;Wang, Qian;Zhao, Yu-Liang;Yu, Jing-Lin;Tian, Yan;Wang, Xiao-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10967-10970
    • /
    • 2015
  • Objective: To analyze the efficacy and survival associated factors of gefitinib combined with cisplatin and gemcitabine for advanced non-small cell lung cancer. Materials and Methods: A total of 57 patients with advanced non-small cell lung cancer (NSCLC), who received platinum-based chemotherapy regimens for more than 1 cycle, were treated with gefitinib combined with cisplatin and gemcitabine until disease progression. Efficacy, survival time and adverse reactions were observed. The Kaplan-Meier method was adopted for analysis of survival and Cox regression for associated influencing factors. Results: The patients were followed up until October 31, 2013, and the median follow-up time was 19 months. Of 57 patients, there were 4 (7.0%) with complete remission (CR), 8 (14.0%) with partial remission, 31 (54.4%) with stable disease, and 14 (24.6%) with disease progression. The remission rate was 21.1% and the disease control rate was 75.4%. The median progression-free survival (PFS) time and the median overall survival time were 10 months and 15.2 months. The one-year, two-year and three-year survival rates were 47.4%, 23.3% and 10.0%. Gender and pathological types were the independent risk factors influencing PFS time (P=0.028, P=0.009). Tumor pathological type and early efficacy were independent factors for the prognosis (P=0.018, P=0.000). Adverse reactions were mostly rashes of I~II degree and diarrhea and slightly increasing level of aminopherase. The skin adverse event incidence of III degree or above was 1.8% (1/57) and brain metastasis was foudn in 31.6% (18/57). Conclusions: Gefitinib combined with cisplatin andgemcitabine, is effective for patients with IIIb~IV NSCLC who received multiple cycles of chemotherapy.

Analysis of Thymosin β4 and Vascular Endothelial Cell Growth Factor (VEGF) Expression in Normal Human Tissues Using Tissue Microarray (Tissue microarray를 이용한 사이모신 베타4(Thymosin β4)와 vascular endothelial cell growth factor (VEGF)의 정상 인간 조직 발현 양상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1777-1786
    • /
    • 2009
  • Thymosin ${\beta}4$, a small protein containing 43 amino acids, has multi-functional roles in cell physiology. It was first identified as a thymic maturation factor and recently has been shown to accelerate wound healing, hair growth, angiogenesis, tumor growth, and metastasis. It was also reported to play a key role in developing organs, including the nervous system and heart. Thymosin ${\beta}4$ induces the expression of vascular endothelial cell growth factor (VEGF), laminin-5, and other important biologically active genes. Using tissue microarray analysis, we investigated the expression patterns of thymosin ${\beta}4$ and VEGF in various normal human adult tissues. Thymosin ${\beta}4$ was highly expressed in the liver, pancreas, ductal epithelium of the salivary gland, and heart, and moderately expressed in the skin, lung, spleen, lymph node, thymus, ureter, and blood endothelial cells in both the lung and adrenal gland. The expression of VEGF generally co-localized with thymosin ${\beta}4$ and VEGF was highly expressed in the pancreas, ureter, mammary gland, liver, esophagus, and blood endothelial cells in both the lung and adrenal gland. These results suggest that thymosin ${\beta}4$ plays an important role in the function of various organs and since the expression pattern of thymosin ${\beta}4$ co-localized with VEGF, part of that function may be to induce or maintain angiogenesis.

Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals (소동물 발광영상 측정을 위한 광학분자영상기기의 개발)

  • Lee, Byeong-Il;Kim, Hyeon-Sik;Jeong, Hye-Jin;Lee, Hyung-Jae;Moon, Seung-Min;Kwon, Seung-Young;Choi, Eun-Seo;Jeong, Shin-Young;Bom, Hee-Seung;Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • Purpose: Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. Materials and Methods: In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. Results: We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. Conclusion: We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future.

Anti-Inflammatory Activity of Carthamus tinctorious Seed Extracts in Raw 264.7 cells (대식세포 내에서의 홍화자 추출물의 항염증 활성)

  • Kim, Dong-Hee;Hwang, Eun-Young;Son, Jun-Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • The objective of this study was to evaluate the anti-inflammation effect of extract of Carthamus tinctorious seed, on skin obtained from Gyeong buk, Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% ethanol extracted of Carthamus tinctorious seed and further cultured for an appropriated time after the addition of lipopolyssacharide (LPS). During the entire experimental period, 5, 10, 25 and 50 ${\mu}g/ml$ of Carthamus tinctorious seed showed no cytotoxicity. In these concentrations, ethyl acetate layer of ethanol extracted Carthamus tinctorius seed (CT-E/E) inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2). At a 50 ${\mu}g/ml$ level of CT-E/E, $PGE_2$, iNOS and COX-2 inhibition activity were shown 60%, 38%, and 42%, respectively. In addition, CT-E/E reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6. These results suggest that Carthamus tinctorious seed extracts may be a potential anti-inflammatory therapeutic agent due to the significant effects on inflammatory factors.

Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus (애기뿔소똥구리 유래 CopA3합성 펩타이드의 항염증 효능에 관한 연구)

  • Kim, Hyeon-Jeong;Kim, Dong-Hee;Lee, Jin-Young;Hwang, Jae-Sam;Lee, Joon-Ha;Lee, Seul-Gi;Jeong, Hyeon-Guk;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • The objective of this study was to evaluate the effect of the synthetic CopA3 peptide of Copris tripartitus on skin inflammation. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of RAW 264.7 cells. Tested cells were treated with different concentrations of CopA3 and further cultured for an appropriate time after lipopolyssacharide (LPS) addition. During the entire experimental period, 5, 25, 50, and 100 ${\mu}g/ml$ of CopA3 had no cytotoxicity. At these concentrations, CopA3 inhibited tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). CopA3 also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). CopA3 inhibited the activity of iNOS and COX-2 by 41% and 59%, respectively, at 100 ${\mu}g/ml$. In addition, CopA3 reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results suggest that CopA3 may have significant effects on inflammatory factors and that it may be a potential anti-inflammatory therapeutic agent.

Evaluation of Real-time Target Positioning Accuracy in Spinal Radiosurgery (척추방사선수술시 실시간 추적검사에 의한 병소목표점 위치변이 평가)

  • Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.290-294
    • /
    • 2013
  • Stereotactic Radiosurgery require high accuracy and precision of patient positioning and target localization. We evaluate the real time positioning accuracy of isocenter using optic guided patient positioning system, ExacTrac (BrainLab, Germany), during spinal radiosurgery procedure. The system is based on real time detect multiple body markers attached on the selected patient skin landmarks. And a custom designed patient positioning verification tool (PPVT) was used to check the patient alignment and correct the patient repositioning before radiosurgery. In this study, We investigate the selected 8 metastatic spinal tumor cases. All type of tumors commonly closed to thoracic spinal code. To evaluate the isocenter positioning, real time patient alignment and positioning monitoring was carried out for comparing the current 3-dimensional position of markers with those of an initial reference positions. For a selected patient case, we have check the isocenter positioning per every 20 millisecond for 45 seconds during spinal radiosurgery. In this study, real time average isocenter positioning translation were $0.07{\pm}0.17$ mm, $0.11{\pm}0.18$ mm, $0.13{\pm}0.26$ mm, and $0.20{\pm}0.37$ mm in the x (lateral), y (longitudinal), z (vertical) directions and mean spatial error, respectively. And body rotations were $0.14{\pm}0.07^{\circ}$, $0.11{\pm}0.07^{\circ}$, $0.03{\pm}0.04^{\circ}$ in longitudinal, lateral, table directions and mean body rotation $0.20{\pm}0.11^{\circ}$, respectively. In this study, the maximum mean deviation of real time isocenter positioning translation during spinal radiosurgery was acceptable accuracy clinically.

Anti-inflammatory and Anti-Atopic Effects of Crude Extracts and Solvent Fractions of Phormium tenax leaf (신서란(Phormium tenax) 잎 조추출물 및 용매 분획물의 항염증 및 항아토피 효과)

  • Yang, Kwon Min;Song, Sang mok;Lee, Doseung;Yoon, Weon-Jong;Kim, Chan-Shick;Kim, Chang Sook
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2019
  • This study describes a preliminary evaluation of the anti-inflammatory activity and anti-atopic activity of Phormium tenax leaf extracts. P. tenax leaf was extracted using 70% ethanol and then fractionated sequentially with n-hexane, methylene chloride, ethyl acetate, n-butanol. In order to effectively screen for anti-inflammatory agents, we first investigated the inhibitory effects of P. tenax leaf crude extracts and solvent fractions on production of pro-inflammatory factors[nitric oxide(NO), prostaglandin $E_2(PGE_2)$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2(COX-2)] and pro-inflammatory cytokines [tumor necrosis $factor-{\alpha}(TNF-{\alpha})$, interleukin-6(IL-6) and $interleukin-1{\beta}(IL-1{\beta})$] in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells. In addition, we also evaluated of their inhibitory effect on the atopic dermatitis-like inflammatory markers such as macrophage-derived chemokine(MDC) and thymus and activation-regulated chemokine(TARC) in HaCaT cells. Among the five solvent fractions of P. tenax, methylene chloride and ethyl acetate fractions inhibited production of pro-inflammatory factors and pro-inflammatory cytokines in a dose dependent manner, respectively. These fractions were also showed inhibitory activity for MDC and TARC expression levels in $IFN-{\gamma}-stimulated$ HaCaT cells, respectively. These results suggest that P. tenax have significantly effects of anti-inflammatory activity and anti-atopic activity that might be beneficial for the topical treatment of inflammatory skin disorders.

Bioactive effects of a Herbal Formula KDC16-2 Consisting Portulaca oleracea L. Extracts (마치현 추출물 함유 제제 KDC16-2의 생리 활성 효과)

  • Hur, Gayeong;Lee, Soyoung;Kim, Yeon-Yong;Jang, Hyun-Jae;Lee, Seung-Jae;Lee, Seung Woong;Choi, Jung Ho;Rho, Mun-Chual
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • Portulaca oleracea L. (PL) has been used in traditional medicine herb for treatment of various diseases, such as diarrhea, dysentery, and skin inflammation. Previous studies have shown that the PL regulates the inflammation by inhibition of pro-inflammatory cytokines. Although PL might have improvement effects of intestinal function and bioactive effects, there are not enough studies to demonstrate. This study investigated the effects of KDC16-2 on the improvement of intestinal function and anti-inflammatory effects in vivo and in vitro. The improvement effect of intestinal function was measured fecal amount, water content and intestinal transit rate in KDC16-2 treated ICR mice. As results, compared with the control group, the KDC16-2 group showed a significant increase in wet fecal weight, dry fecal weight and fecal water content. The intestinal transit rate of KDC16-2 group was significantly increased. Based on the results, KDC16-2 is considered to have effects on improving intestinal function. The effect of anti-inflammatory demonstrated by using dextran sulfate sodium (DSS)-induced colitis mice. The mice were administered 3% DSS along with KDC16-2 (100, 300 mg/kg) for 14 days. DSS-induced colitis mice were significantly ameliorated in KDC16-2 treated group, including body weight loss, colon length shortening, tight junction protein of colon and histological colon injury. The levels of inflammatory mediators (IgG2a, IgA, C-reactive protein and Myeloperoxidase) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, Interleukin (IL)-6) which are involved in inflammatory responses were increased in the DSS-treated group as compared to those in the control group, and the levels were significantly decreased in the KDC16-2 groups. In addition, we investigated the impact of KDC16-2 on lipopolysaccharide (LPS)-induced inflammatory responses in J774A.1 cells. KDC16-2 inhibited production of prostaglandin E2 (PGE2) and reactive oxygen species (ROS). These results suggested that the KDC16-2 could effectively alleviate the dysfunction of intestinal and inflammatory mediators. Thus, these KDC16-2 can be potentially used as health functional food of intestinal.

Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4 (Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화)

  • Kim, You Me;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2021
  • Proton therapy using the Bragg peak is one of the radiation therapies and can deliver its maximum energy to the tumor with giving least energy for normal tissue. A cross-sectional image of the human body taken with the computed tomography (CT) has been used for radiation therapy planning. The HU values change according to the tube voltage, which lead to the change in the boundary and thickness of the anatomical structure on the CT image. This study examined the changes in the Bragg peak of the brain region according to the thickness variation in the head phantom composed of several materials using the Geant4. In the phantom composed of a single material, the Bragg peak according to the type of media and the incident energy of the proton beams were calculated, and the reliability of Geant4 code was verified by the Bragg peak. The variation of the peak in the brain region was examined when each thickness of the head phantom was changed. When the thickness of the soft tissue was changed, there was no change in the peak position, and for the skin the change in the peak was small. The change of the peak position was mainly changed when the bone thickness. In particular, when the bone was changed only or the bone was changed together with other tissues, the amount of change in the peak position was the same. It is considered that measurement of the accurate bone thickness in CT images is one of the key factors in depth-dose distribution of the radiation therapy planning.