Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

소동물 발광영상 측정을 위한 광학분자영상기기의 개발

  • Lee, Byeong-Il (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Kim, Hyeon-Sik (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Jeong, Hye-Jin (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Lee, Hyung-Jae (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Moon, Seung-Min (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Kwon, Seung-Young (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Choi, Eun-Seo (Department of Physics, Chosun University) ;
  • Jeong, Shin-Young (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Min, Jung-Joon (Department of Nuclear Medicine, Chonnam National University Hospital)
  • 이병일 (전남대학교병원 핵의학과) ;
  • 김현식 (전남대학교병원 핵의학과) ;
  • 정혜진 (전남대학교병원 핵의학과) ;
  • 이형재 (전남대학교병원 핵의학과) ;
  • 문성민 (전남대학교병원 핵의학과) ;
  • 권성영 (전남대학교병원 핵의학과) ;
  • 최은서 (조선대학교 물리학과) ;
  • 정신영 (전남대학교병원 핵의학과) ;
  • 범희승 (전남대학교병원 핵의학과) ;
  • 민정준 (전남대학교병원 핵의학과)
  • Published : 2009.08.30

Abstract

Purpose: Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. Materials and Methods: In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. Results: We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. Conclusion: We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future.

목적: 광학영상기술은 소동물이나 임상연구에서 분자영상법으로 알려진 첨단연구 분야이다. 광학영상기기는 소동물영상연구 및 추적연구에 중요한 역할을 수행하고 있다. 발광영상에서 소동물을 영상화 하기 위해서는 피부조직을 뚫고 나오는 광자를 검출하기 위한 고민감도 CCD카메라가 필요하다. 이 연구에서는 소동물에서 발생하는 발광신호를 검출하기 위해 개발한 광학영상기기를 소개하고자 한다. 대상 및 방법: 냉각형 CCD카메라와 집광렌즈, 8개의 백색광 LED광원을 암실상자 안에 장치하였다. 팬텀 및 튜브를 이용한 영상을 얻은 후 발광 박테리아를 이용하여 CT26 암모델 누드마우스에서 영상을 획득하였다. 결과: 발광영상을 얻기 위한 광학영상기기를 설계하고 개발하였다. 영상획득이 성공적으로 수행되었고, 시스템을 완성하였다. 개발된 장비는 분자영상연구에 사용되고 있다. 결론 개발된 광학영상장비는 다양한 실험적 조건을 만족하는 연구에 최적화하여 유용한 도구로 자리잡을 것으로 기대한다.

Keywords

References

  1. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-7 https://doi.org/10.1038/86684
  2. Sadilot RT, Blackwell TS. Bioluminescence imaging. Proc Am Thorac Soc 2005;2:537-40 https://doi.org/10.1513/pats.200507-067DS
  3. O'Connell-Rodweli CE, Burns SM, Bachmann MH, Contag CH. Bioluminescent indicators for in vivo measurements of gene expression. Trends in Biotechnology 2002;20:19-23 https://doi.org/10.1016/S0167-7799(02)02001-2
  4. Contag PR, Olomu IN, Stevenson DK, Contag CH. Bioluminescent indicators in living mammals. Nat Med 1998;4:245-7 https://doi.org/10.1038/nm0298-245
  5. Chung J-K General perspectives for molecular nuclear imaging. Korean J Nucl Med 2004;38:111-4
  6. Ye JC, Webb KJ, Millane RP, Bouman CA. In vivo optical molecular imaging: Principles and signal processing issues. IEEE Press ICASSP 2005;5:849-52 https://doi.org/10.1109/ICASSP.2005.1416437
  7. Ray P, De A, Min JJ, Tsien RY, Gambhir SS. Imaging tri-fusion multi-modality reporter gene expression in living subjects. Cancer Res 2004;64:1323-30 https://doi.org/10.1158/0008-5472.CAN-03-1816
  8. Takeda M, Kobayashi M, Takayama M, Suzuki S, Ishida T, Ohnuki K, et al. Biophoton detection as a novel technique for cancer imaging, Cancer Sci 2004;95:656-61 https://doi.org/10.1111/j.1349-7006.2004.tb03325.x
  9. Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, Letourneau DL, McMillian CL, et al. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Animicrob Agents Chemother 2001;45:129-37 https://doi.org/10.1128/AAC.45.1.129-137.2001
  10. Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Rev 1991;55:123-42
  11. Meyer RR, Kirkland AI. Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 2000;49:269-80 https://doi.org/10.1002/(SICI)1097-0029(20000501)49:3<269::AID-JEMT5>3.0.CO;2-B
  12. Min JJ. Progress and prospects of reporter gene imaging. Biosystems Review 2006;2:2-21
  13. Yamauchi K, Yang M, Jiang P, Yamamota N, Xu M, Amoh Y, et al. Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 2005;65:4246-52 https://doi.org/10.1158/0008-5472.CAN-05-0069
  14. Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov AJ, et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. PNAS 2004;101:12294-9 https://doi.org/10.1073/pnas.0401137101
  15. Ntziachristos V, Bremer C, Weissleder R Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003;13:195-208
  16. Min JJ, Nguyen VH, Kim HJ, Hong YJ, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 2008;3:629-36 https://doi.org/10.1038/nprot.2008.32
  17. Jawhara S, Mordon S. Monitoring of bactericidal action of laser by in vivo imaging of bioluminescent E. coli in a cutaneous wound infection. Lasers Med Sci 2006;21:153-9 https://doi.org/10.1007/s10103-006-0388-8
  18. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;66:523-31 https://doi.org/10.1111/j.1751-1097.1997.tb03184.x
  19. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minima1 residual disease. Am J Pathol 2002;160:1143-53 https://doi.org/10.1016/S0002-9440(10)64934-6
  20. Rice BW, Cable MD, Nelson MB. In vivo imaging of lightemitting probes. J Biomed Opt 2001;6:432-40 https://doi.org/10.1117/1.1413210