• Title/Summary/Keyword: Skin damage

Search Result 669, Processing Time 0.026 seconds

Effects of Natural Extracts on UVB-induced Pigmentation and Inflammation in C57BL/6 Mouse Skin (천연물 도포가 UVB 파로 손상된 C57BL/6 mouse 피부의 색소침착과 염증생성에 미치는 영향)

  • Choi, Wook-Hee;Ann, Hyoung-Soo;Choi, Tae-Youn;Jin, So-Young;Ahn, Ryoung-Me
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.492-498
    • /
    • 2006
  • Ultraviolet(UV) radiation causes a variety of biological effects on the skin, including inflammation, pigmentation, photoaging and cancer. Free radicals are involved in inflammatory skin reactions induced by UVB radiation. In this study, we investigated the effects of antioxidants(Tea, Korean red ginseng, Ginkgo biloba extract) on UVB-induced skin damage. Tea, KRG and EGb 761 were topically treated to dorsal skin of ICR mouse. The mice were also treated soon after IMED ($1.4KJ/m^{2}$) of UVB irradiation. Skin pigmentation of irradiated mouse was observed by a chromameter after 2 weeks. Topical application of Tea, KRG and EGb 761 for 2 weeks decreased skin pigmentation compared to DVB control group(p<.05). Tea, KRG and EGb 761 also reduced UVB-induced infiltration of inflammatory cells. These results showed that Tea, KRG and EGb 761 as a topical application may have preventive effect against UVB-induced skin damage.

The Level of UVB-induced DNA Damage and Chemoprevention Effect of Paeoniflorin in Normal Human Epidermal Kerationcytes

  • Lim, Jun-Man;Park, Mun-Eok;Lee, Sang-Hwa;Kang, Sang-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • Ultraviolet (UV) radiation to mammalian skin is known to alter cellular function via generation of Reactive Oxygen Species (ROS), DNA damage and DNA lesions, such as pyrimidine dimmers and photoproducts, which could lead to DNA mutation if they are not repaired. In this study, we have investigated the reduction of DNA damage and of apoptosis with a particular attention to genetic effect of paeoniflorin in Normal Human Epidermal Keratinocytes (NHEK). After UVB irradiation from $10\;to\;500mJ/cm^{2}$ to NHEK, Mean Tail Moments (MTM) were increased with UVB dose increase. The greatest amount of strand breaks was induced at $500mJ/cm^{2}$ of UVB. Even at the lowest dose of UVB ($10mJ/cm^{2}$), change in MTM was detected (P<0.0001). Pretreated cell with 0.1% paeoniflorin maximally reduced the level of DNA damage to about 21.3%, compared to untreated cell. In the lower concentrations less than 0.01% of paeoniflorin, MTM had a small increase but paeoniflorin still had reductive effects of DNA damage. We measured the apoptosis suppression of paeoniflorin with annexin V flous staining kit. As we observed under the fluorescence microscopy to detect apoptosis in the irradiated cell, the fluorescence intensity was clearly increased in the untreated cell, but decreased in treated cells with paeoniflorin. These results suggest that paeoniflorin reduces the alteration of cell membranes and prevents DNA damage. Therefore, the use of paeoniflorin as a free radical scavenger to reduce the harmful effects of UV lights such as chronic skin damage, wrinkling and skin cancer can be useful to prevent the formation of photooxidants that result in radical damage.

Improvement Effect of Corn Silk, Perilla Leaf and Grape Stem Extract Mixture against UVB-Induced Skin Damage and Compound 48/80-Induced Pruritus (옥수수수염, 들깻잎 및 포도줄기 복합추출물의 UVB 조사 피부 손상 및 Compound 48/80 유도 가려움증 개선 효과)

  • Cho, Byoung Ok;Shin, Jae Young;Che, Denis Nchang;Hwang, Young Min;Lee, Hyun Seo;Ryu, Cheol;Choi, Jiwon;Jang, Seon Il
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • This study was conducted to evaluate the synergistic protective effects of mixtures of corn silk, perilla leaf and grape stem extract (CPG mixture) against UVB-induced skin damage and compound 48/80-induced pruritus in mice. The results showed that treatment with CPG mixture exhibited much stronger suppressive effect on erythema and melanin index as well as melanin formation than treatment with ascorbic acid (AA) in UVB-irradiated mice. Moreover, the treatment with CPG mixture showed ameliorative effect on immune cell infiltration and collagen fiber destruction in UV-irradiated mice. The treatment with CPG mixture inhibited glutathione (GSH) depletion, lipid peroxidation and production of pro-inflammatory cytokines in UVB-irradiated mice. Furthermore, the treatment with CPG mixture inhibited compound 48/80-induced scratching behavior and histological changes in mice. Taken together, these results indicated that CPG mixture has potentials as functional and therapeutic materials against skin damage and itch-related skin diseases.

Effect of a New Developed Physical Restraint to Reduce Skin Injury in Intensive Care Units (중환자실에서 피부손상을 감소시키기 위한 억제대 개발 및 적용효과)

  • Mun, Jung-Sook;Lee, Gyeong-Nam;Lee, Dong-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.18 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • Purpose: The purpose of this study were to develop a new restraint for the intensive care units (ICU) and to investigate the application effect in comparison with a control group using existing restraints. Method: A non-equivalent control group non-synchronized quasi-experimental research design was used. The participants were 40 (control 20, experimental 20) patients who were recruited by convenience sampling the ICU of a university hospital. To avoid contamination of the experiment, data for the control group were collected prior to the experimental group. Measurement variables were edema and skin damage (redness and abrasion) at the application site, and nurses' perceived convenience in applying restraints. Results: Three days after applying the restraint, amount of edema at the application site was small and incidence of skin damage decreased in the experimental group in comparison with the control group. Also, score for application convenience measured by the nurses was higher in for the newly developed restraint than for existing restraints. Conclusion: Results indicate that the newly developed restraint has lower effects such as edema and skin damage and is more convenient compared with existing restraints, and is therefore recommended for patients in the ICU.

Treatment of Peripheral Facial Palsy with Skin Damage Caused by Folk Remedies Using Korean Medicine: A Case Report (민간요법으로 피부손상을 동반한 말초성 안면마비에 대한 한의치료 증례 보고)

  • Yoona, Oh;Yeonhak, Kim;Jihun, Kim;Eunseok, Kim;Byung Ryul, Lee;Gi Young, Yang
    • Korean Journal of Acupuncture
    • /
    • v.39 no.4
    • /
    • pp.191-198
    • /
    • 2022
  • Peripheral facial palsy generally results from damage to the facial nerve. As facial asymmetry is observed, it accompanies not only functional problems but also psychological and social difficulties. Medical institutions treat most patients, however, there are still patients who rely on invasive methods by unqualified practitioners for fear of sequelae. This case describes a 61-year-old woman who experienced facial palsy twice. She visited our hospital with skin damage after folk patch therapy for her facial palsy. Combined Korean medicine treatment was administered during treatment period. After treatments, the symptoms of facial palsy and skin lesions improved. This case showed that Korean Medicine was efficacious in improving symptoms of facial palsy with damaged skin caused by folk patch therapy. Education and awareness of uncontrolled invasive treatments for facial palsy are needed.

Protective Effect of Glycyrrhiza glabra Extract on UV-induced Skin DNA Damage (감초추출물(Glycyrrhiza glabra Extract)의 피부에서의 DNA 손상 방지효과)

  • Shin, Jae Young;Kang, Nae Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.33-38
    • /
    • 2022
  • Ultraviolet B (UVB) damages DNA residues in skin keratinocytes. In particular, the formation of cyclobutane pyrimidine dimers (CPD), a pyrimidine residue damage in DNA, is considered a representative indicator of skin photoaging. In this study, we confirmed defensive effect of Glycyrrhiza glabra (G. glabra) extract against UVB induced DNA damage. First of all, we confirmed UVB dependent amount of CPD formation in human keratinocyte cell line. UVB induced CPD was decreased by G. glabra extract by dose dependent manner. In addition, it was confirmed that the expression of mRNA of DNA damage recovery factors was increased by G. glabra extract. Consequently, through this study, it was possible to confirm the DNA protection effect of G. glabra extract in skin keratinocytes.

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.291-312
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as anti-aging cosmetic ingredient.

  • PDF

Inhibitory effects of Prunus persica flower extracts on UV-induced skin damage

  • Lee, Kang-Tae;Yoo, Young-Kyoung;Kim, Sung-Woo;Jeong, Ji-Hean;Jo, Byoung-Kee;Kim, Young-Ha;Yang, Hye-Eum;Heo, Moon-Young;Kim, Hyun-Pyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-81
    • /
    • 2001
  • For an attempt to develop safe materials protecting UV-induced skin damage, plant extracts were evaluated for their antioxidative and free radical scavenging activities. From the results of these screening procedures, the ethanol extract of the flowers of Prunus persica was selected for further study. It was found that Prunus persica (50-200 $\mu\textrm{g}$/㎖) inhibited UVB-induced DNA damage measured by tail moment in the Single Cell Gel Electrophoresis(COMET assay) and inhibited UV-induced lipid peroxidation, expecially against UVB-induced peroxidation at higher than 10 $\mu\textrm{g}$/㎖. Also P.persica(100∼1,000 $\mu\textrm{g}$/㎖) inhibited the amount of $\^$14/C-arachidonic acid metabolites release from UVB-irradiated keratinocytes and it possessed the protective activity against UV-induced cytotoxicity of keratinocytes. All these results indicate that the flowers of P. persica extract may be beneficial for protection UV-induced skin damage when topically applied.

  • PDF

Protection of the Flowers of Prunus persica Extract from Ultraviolet B-Induced Damage of Normal Human Keratinocytes

  • Kim, Young-Ha;Yang, Hye-Eun;Kim, Jong-Ha;Heo, Moon-Young;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.396-400
    • /
    • 2000
  • For an attempt to develop safe materials protecting solar ultraviolet (UV)-induced skin damage, plant extracts were evaluated for their inhibitory activities of free radical generation and arachidonic acid/metabolites release from UVB-irradiated normal human keratinocytes. From the results of these screening procedures, the ethanol extract of the flowers of Prunus persica (Ku-35) was selected for further study. It was found that Ku-35 (100-1,000 ${u}g/m\ell$) inhibited the amount of $^{14}C$-arachidonic acid/metabolites release from UVB-irradiated keratinocytes. It was also demonstrated that Ku-35 possessed the protective activity against UV-induced cytotoxicity of keratinocytes and fibroblasts. In addition, Ku-35 was revealed to protect UVB-induced erythema formation using guinea pigs in preliminary in vivo study. All these results indicate that the flowers of P. persica extract may be beneficial for protecting UV-induced skin damage when topically applied.

  • PDF

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.117-138
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as antiaging cosmetic ingredient.

  • PDF