• Title/Summary/Keyword: Skin Friction

Search Result 419, Processing Time 0.023 seconds

Psychophysiological Responses to the Sound of fabric Friction (직물 마찰음에 대한 심리생리적 반응)

  • 조자영;이은주;손진훈;조길수
    • Science of Emotion and Sensibility
    • /
    • v.4 no.2
    • /
    • pp.79-88
    • /
    • 2001
  • The objectives of this study were to investigate the relationship of sound parameters with subjective sensation and physiological responses, and to figure out the interrelationship between the subjective sensation and physiological responses. Sound parameters calculated were LPT, ΔL, Δf, loudness[Z], and sharpness[Z]. Subjective sensation was evaluated in 7 aspects(soft-hard, loud-quiet, pleasant-unpleasant, sharp-dull, clear-obscure, rough-smooth, high-low) by thirty participants. We acquired physiological responses when each fabric sound was presented to 10 participants. Physiological signals obtained in this study were electroencephalogram(EEG), pulse volume(PV), skin conductance level(SCL), and LF/HF of heart rate variability. The larger the values of loudness[Z] and LPT, the louder and the rougher the subjective sensation of the perceived fabric sound. Also, the larger the values of loudness[Z] and LPT, the harder, the duller, and the less pleasant. As LPT increased, PV decreased. Loudness[Z] increased in proportion to SCL and so did sharpness[Z] to LF/HF. As the sound perceived to be quieter and clearer, the relative power of slow alpha rose. As the sound perceived to be more pleasant and smoother, PV rose.

  • PDF

Comparison between Wilcox к - ω turbulence models for supersonic flows (초음속 유동 해석을 위한 Wilcox к - ω 난류 모델 비교)

  • Kim, Min-Ha;Parent, Bernard
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.375-384
    • /
    • 2012
  • This paper presents numerical results comparing the performance of the 2008 Wilcox $\mathcal{k}-{\omega}$ turbulence model to the one of the 1988 Wilcox $\mathcal{k}-{\omega}$ model for supersonic flows. A comparison with experimental data is offered for a shock wave/turbulent boundary layer interaction case and two ramp injector mixing cases. Furthermore, a comparison is performed with empirical correlations on the basis of skin friction for flow over a flat plate and shear layer growth for a free shear layer. It is found that the maximum injectant mass fraction of some ramp injector cases is better predicted using the 1988 Wilcox model. On the other hand, the 2008 model performs better in simulating shock-boundary layer cases.

The Development of End-expanded Soil Nailing Method for Ground Reinforcement and its Behavior Characteristics (선단확장형 쏘일네일링 공법 개발과 거동특성 분석)

  • Moon, Hongduk;Jung, Youndug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.19-27
    • /
    • 2013
  • Recently, the natural and man-made slope collapses occur frequently because of sudden heavy rains. So, a variety of slope reinforcement methods have been developed and applied to failure slopes. Soil nailing method usage has been increased because of its workability and economic aspects. This method has been applied in combination with other slope stability methods. Soil nailing method is a kind of combinational structure of steel bar and cement grouting. This method uses skin friction between adjacent ground and cement grouting to stabilize the slope. In this study, End-expanded soil nailing method was developed. This method consists of steel bar and anchor body attached at the tip of the nail. During construction, the anchor body at steel bar tip is settled to the ground through the expanding action. In this study, field pull-out tests were performed for un-grouting soil nailing and grouting soil nailing. From the test results, a wedge force of End-expanded soil nailing method was analyzed. And the behavior characteristics of End-expanded soil nailing were studied.

Predictions of PC Pile Shaft Resistance by CPT Data (콘관입시험자료를 기초로 한 PC말뚝의 주면마찰력 예측)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Three prestressed concrete(PC) piles were installed for research purpose at Seosan area of west sea of Korea, and also cone penetration tests (CPT) were performed near two pile locations in order to compute PC pile shaft resistance by using CPT data measured. Three common CPT prediction methods that ia, Schmertmann method, Tumay Sl Fakroo method and LCPC method in France were used to predict pile shaft resistance. The pile shaft resistance predicted by each method was compared with that obtained by full-scale loading test and pile driving analyzer to estimate reliability of each prediction method. The predicted resistances based on three CPT-based methods underestimated significantly the resistances obtained from by fullrcale loading test, performed at 25 days and 42 days text pile installtion. There were, however, good agreements of predicted shaft resistance of piles between three CPT-based methods and pile driving analyzer tested two weeks after pile installtion.

  • PDF

A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient (압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발)

  • Baek, Seong-Gu;Im, Hyo-Jae;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

Study on Flow Structure of Turbulent Boundary Layer Over Semi-Circular Riblets (반원형 리블렛 상부 난류경계층의 유동 구조 연구)

  • Lee, Sang Hyun;Lee, Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.937-944
    • /
    • 1999
  • The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing ($s^+=25.2$) and drag increasing ($s^+=40.6$) cases. The field of view used for tho velocity field measurement was $6.75{\times}6.75mm^2$ in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case ($s^+=25.2$), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside tho riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plato. For the drag increasing case ($s^+=40.6$), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases tho skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate.

Behavior of Floating Base Plate by Stress Delivery Mechanism (부양형 팽이기초의 하중전달 메커니즘에 따른 거동)

  • Chung, Jin-Hyuck;Jung, Hye-Kwun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • Up to now, common studies of top base have concentrated upon bearing capacity and settlement by in-situ loading test in Japan and Korea. But most of all preceding study for top base must analyze how to deliver overburden loading on bottom of foundation. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test. Analyzing the load delivery mechanism of top base, it was found that the division rate of load reduction of top base for overburden load was largest in peripheral skin friction between the top base and the crushed stone. Further, total stress dispersion angle of Top-Base Foundation including internal stress dispersion effect of top base was $41.8^{\circ}$ and total stress dispersion angle of Floating Top Base was $44.5^{\circ}$.

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

Influence of the Mars atmosphere model on aerodynamics of an entry capsule: Part II

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.229-249
    • /
    • 2020
  • This paper is the logical follow-up of four papers by the author on the subject "aerodynamics in Mars atmosphere". The aim of the papers was to evaluate the influence of two Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere and also to verify the feasibility of evaluating experimentally the ambient density and the ambient pressure by means of the methods by McLaughlin and Cassanto respectively, therefore to correct the values provided by the models. The study was carried out computationally by means of: i) a code integrating the equations of dynamics of an entry capsule for the computation of the trajectories, ii) two Direct Simulation Monte Carlo (DSMC) codes for the solution of the 2-D, axial-symmetric and 3-D flow fields around the capsule in the altitude interval 50-100 km. The computations verified that the entry trajectories of Pathfinder from the two models, in terms of the Mach, Reynolds and Knudsen numbers, were very different. The aim of the present paper is to continue this study, considering other aerodynamic problems and then to provide a contribution to a long series of papers on the subject "aerodynamics in Mars atmosphere". More specifically, the present paper evaluated and quantified the effects from the two models of: i) chemical reactions on aerodynamic quantities in the shock layer, ii) surface temperature, therefore of the contribution of the re-emitted molecules, on local (pressure, skin friction, etc.) and on global (drag) quantities, iii) surface recombination reactions (catalyticity) on heat flux. The results verified that the models heavily influence the flow field (as per the shock wave structure) but, apart from the surface recombination reactions, the effects of the different conditions on aerodynamics of the capsule are negligible for both models and confirmed what already found in the previous paper that, because of the higher values of density from the NASA Glenn model, the effects on aerodynamics of a entry capsule are stronger than those computed by the GRAM-2001 model.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.