Communications for Statistical Applications and Methods
/
v.25
no.6
/
pp.633-645
/
2018
Gaussian error distributions are a common choice in traditional regression models for the maximum likelihood (ML) method. However, this distributional assumption is often suspicious especially when the error distribution is skewed or has heavy tails. In both cases, the ML method under normality could break down or lose efficiency. In this paper, we consider the log-concave and Gaussian scale mixture distributions for error distributions. For the log-concave errors, we propose to use a smoothed maximum likelihood estimator for stable and faster computation. Based on this, we perform comparative simulation studies to see the performance of coefficient estimates under normal, Gaussian scale mixture, and log-concave errors. In addition, we also consider real data analysis using Stack loss plant data and Korean labor and income panel data.
Performing continuous skyline queries of dynamic data sets is now more challenging as the sizes of data sets increase and as they become more volatile due to the increase in dynamic updates. Although previous work proposed support for such queries, their efficiency was restricted to small data sets or uniformly distributed data sets. In a production database with many concurrent queries, the execution of continuous skyline queries impacts query performance due to update requirements to acquire exclusive locks, possibly blocking other query threads. Thus, the computational costs increase. In order to minimize computational requirements, we propose a method based on a multi-layer grid structure. First, relational data object, elements of an initial data set, are processed to obtain the corresponding multi-layer grid structure and the skyline influence regions over the data. Then, the dynamic data are processed only when they are identified within the skyline influence regions. Therefore, a large amount of computation can be pruned by adopting the proposed multi-layer grid structure. Using a variety of datasets, the performance evaluation confirms the efficiency of the proposed method.
It is not known in details for the A.D. period as the archaeomagnetic dating method to be fully facilitated in Korea but it has prepared for the revised shape of standard curve to trace the geomagnetic field variation, and there were cases to increase the survey on relics on the B.C. period to find out for the detailed archaeomagnetic field variation on the Bronze Age to the Early Iron Age. Furthermore, the survey cases on the relics on the Neolithic Age began to emerge a little by little archaeomagnetic field variation of the Neolithic Age through 34 pieces of the archaeomagnetic measurement data as making active advancement around mid-western region. Data is insufficient yet that it is difficult to find out the detailed trend of modification but it is estimated for approximate appearance. The archaeomagnetic field variation of the Neolithic Age made changes without breaking away from the scope of changes in the A.D. period as in the same way with the Bronze Age, and comparing to the variation of archaeomagnetic field for the Bronze Age, the magnetic inclination shifted within the scope of having almost no difference, but the declination is shown to skewed toward the east in its overall appearance. In addition, the comparison was made with the data of the Jomon Age in Japan and the archaeomagnetic measurement data of Korea has a little bit more depth for while the declination is skewed toward the east for 10 degree or more compared to those of Japan. However, in the part where the data is concentrated most intensely, the data for both countries has significant part to overlap to each other that the archaeomagnetic field variation of the Neolithic Age of Korea showed overall similar variation with certain partial changes when compared to those of Japan.
We developed the projected l-axial skew-normal(LASN) family of distributions for I-axial data. The LASN family of distributions contains the semicircular skew-normal(SCSN) and the circular skew-normal(CSN) families of distributions as special cases. The LASN densities are similar to the wrapped skew-normal densities for the small values of the scale parameter. However CSN densities have more heavy tails than those of the wrapped skew-normal densities on the circle. Furthermore the CSN densities have two modes as the scale parameter increases. The LASN distribution has very convenient mathematical features. We extend the LASN family of distributions to a bivariate case.
Sedimentary petrology and depositional environments of the Sindong Group, consisting of in ascending order the Nagdong, Hasandong and Jinju Formations, in the Euiseong Subbasin are studied. For these, the Sindong sequence over 1,000m thick is measured at the scale of 1:200 and 36 thin sections of sandstones of the Hasandong Formation are studied under the polarizing microscope. In addition, published paleontologic data are incorporated in the sedimentologic interpretation. Most of the sandstones are classified as arkose. They are moderately sorted, near symmetrical to fine skewed and mesokurtic. Relationship between the textural parameters suggests a fluviatile environment of the Hasandong Formation. The Sindong fauna and flora also indicate non-marine depositional environments. Sedimentologic data of the measured sections show that the Sindong Group is made up of from the bottom an alluvial fan (lower part of the Nagdong Formation), a fluvial plain (upper part of the Nagdong Formation and the Hasandong Formation) and a fluvial/lacustrine (the Jinju Formation) deposits.
Communications for Statistical Applications and Methods
/
v.20
no.5
/
pp.367-376
/
2013
Cut-off sampling is widely used for a highly skewed population like a business survey by discarding a part of the population (the take-nothing stratum). In this paper, we suggest a new composite estimator of the take-nothing stratum total obtained by use of the survey results of the take-nothing stratum and a take-some sub-stratum (a part of take-some stratum) for a more accurate estimate of the population total. Small simulation studies are conducted to compare the performances of known estimators and the new composite estimator suggested in this study. In addition, we use briquette consumption survey data for real data analysis.
The energy consumption problem in wireless sensor networks is investigated. The problem is to expend as little energy as possible receiving and transmitting data, because of constrained battery. In this paper, in order to extend the lifetime of the network, we proposed a location-based clustering algorithm for wireless sensor network with skewed-topology. The proposed algorithm is to deploy multiple child nodes at the sink to avoid bottleneck near the sink and to save energy. Proposed algorithm can reduce control traffic overhead by creating a dynamic cluster. We have evaluated the performance of our clustering algorithm through an analysis and a simulation. We compare our algorithm's performance to the best known centralized algorithm, and demonstrate that it achieves a good performance in terms of the life time.
The most common type of microarray experiment has a simple design using microarray data obtained from two different groups or conditions. A typical method to identify differentially expressed genes (DEGs) between two conditions is the conventional Student's t-test. The t-test is based on the simple estimation of the population variance for a gene using the sample variance of its expression levels. Although empirical Bayes approach improves on the t-statistic by not giving a high rank to genes only because they have a small sample variance, the basic assumption for this is same as the ordinary t-test which is the equality of variances across experimental groups. The t-test and empirical Bayes approach suffer from low statistical power because of the assumption of normal and unimodal distributions for the microarray data analysis. We propose a method to address these problems that is robust to outliers or skewed data, while maintaining the advantages of the classical t-test or modified t-statistics. The resulting data transformation to fit the normality assumption increases the statistical power for identifying DEGs using these statistics.
Communications for Statistical Applications and Methods
/
v.25
no.1
/
pp.15-27
/
2018
Parametric method of flood frequency analysis involves fitting of a probability distribution to observed flood data. When record length at a given site is relatively shorter and hard to apply the asymptotic theory, an alternative distribution to the generalized extreme value (GEV) distribution is often used. In this study, we consider the beta-P distribution (BPD) as an alternative to the GEV and other well-known distributions for modeling extreme events of small or moderate samples as well as highly skewed or heavy tailed data. The L-moments ratio diagram shows that special cases of the BPD include the generalized logistic, three-parameter log-normal, and GEV distributions. To estimate the parameters in the distribution, the method of moments, L-moments, and maximum likelihood estimation methods are considered. A Monte-Carlo study is then conducted to compare these three estimation methods. Our result suggests that the L-moments estimator works better than the other estimators for this model of small or moderate samples. Two applications to the annual maximum stream flow of Colorado and the rainfall data from cloud seeding experiments in Southern Florida are reported to show the usefulness of the BPD for modeling hydrologic events. In these examples, BPD turns out to work better than $beta-{\kappa}$, Gumbel, and GEV distributions.
The KDB-tree is a traditional indexing scheme for retrieving multidimensional data. Much research for KDB-tree family frequently addresses the low storage utilization and insufficient retrieval performance as their two bottlenecks. The bottlenecks occur due to a number of unnecessary splits caused by data insertion orders and data skewness. In this paper, we propose a novel index structure, called as $KDB_{CS}^+$-tree, to process skewed data efficiently and improve the retrieval performance. The $KDB_{CS}^+$-tree increases the number of fan-outs by exploiting bit-vectors for representing splitting information and pointer elimination. It also improves the storage utilization by representing entries as a hierarchical structure in each internal node.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.