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SYNOPSIS 

 
The most common type of microarray experiment has a simple design using microarray 

data obtained from two different groups or conditions. A typical method to identify 
differentially expressed genes (DEGs) between two conditions is the conventional 
Student’s t-test. The t-test is based on the simple estimation of the population variance for 
a gene using the sample variance of its expression levels. Although empirical Bayes 
approach improves on the t-statistic by not giving a high rank to genes only because they 
have a small sample variance, the basic assumption for this is same as the ordinary t-test 
which is the equality of variances across experimental groups. The t-test and empirical 
Bayes approach suffer from low statistical power because of the assumption of normal and 
unimodal distributions for the microarray data analysis. We propose a method to address 
these problems that is robust to outliers or skewed data, while maintaining the advantages 
of the classical t-test or modified t-statistics. The resulting data transformation to fit the 
normality assumption increases the statistical power for identifying DEGs using these 
statistics. 
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Abstract 
 

The performance of the conventional t-test for microarray data is 
considered poor because the level of replication within groups is 
often low and the expression intensities may not be normally 
distributed. However, the t-test is still one of the most commonly 
used methods for microarray analysis because of its simplicity, its 
speed, and its ability to account for the underlying variability in the 
data. The major drawback in applying the conventional t-test and its 
variations, such as the significant analysis of microarrays (SAM) or 
an empirical Bayes approach, is that gene expression values of 
microarray data exhibit a strong departure from the normal 
distribution. We propose a method to overcome this disadvantage 
that is robust to outliers or skewed data while maintaining the 
advantages of each test. Simulation studies showed that the 
proposed method is more powerful than existing methods, such as 
the conventional t-test, SAM, and the empirical Bayes approach in 
cases where outliers are present and the data come from skewed 
distributions. Application on real microarray data showed close 
agreement with the simulation study. Supplementary information 
and R software code for generating pseudo data are available at 
http://snugenome.snu.ac.kr/bootcl. 
 
 
Introduction 

 
Many scientific papers related to expression profiling using 

microarray technology have been published since the first 
miniaturized microarrays for gene expression profiling were 
reported (Schena et al., 1995). The most common type of 
microarray experiment has a simple design using microarray data 
obtained from two different groups or conditions, e.g., cancer and 
normal tissues (Yoon et al., 2006). A major challenge in this type of 
experimental setup is the identification of genes the expression of 
which is significantly different between two conditions (Aittokallio et 
al., 2003); these are referred to as differentially expressed genes 
(DEGs). A typical method to identify DEGs between two conditions 
is the conventional Student’s t-test (Gosset, 1908). The 
performance of the t-test is considered to be poor as the level of 
replication within groups for microarray experiments is often low, 
and the expression intensities may not be normally distributed 
(Wang and Ethier, 2004). Student’s t-test, however, is still one of 
the most commonly used methods for microarray analysis due in 
part to its simplicity, speed, and ability to account for the underlying 
variability in the data that makes it superior to simple-minded fold 
change methods (Papana and Ishwaran, 2006). The t-test is based 
on the simple estimation of the population variance for a gene using 
the sample variance of its expression levels. As there are problems 
using the t-test with microarray data from a small sample size, 
alternative statistics have been proposed that share the strength of 
all genes to obtain a more stable estimate of gene-specific variance, 
and the resulting statistics are referred to as modified t-statistics 
(Irizarry, 2005). Significance analysis of microarrays (SAM) is a 
common example of modified t-statistics (Tusher et al., 2001). SAM 
statistics have an added constant (“fudge” factor) to prevent the 
situation where a small sample variance causes large t-statistics. 
Thus, they are also referred to as penalized or regularized t-
statistics. Another example of such modified t-statistics is based on 
an empirical Bayes approach available in the Limma R statistical 
package, which reduces estimated sample variances towards a 
pooled estimate, producing more stable result when the number of 
samples is small (Smyth, 2004). The empirical Bayes approach 
improves on the t-statistic by not giving a high rank to genes only 
because they have a small sample variance (Irizarry, 2005). The 
basic assumption for this is the equality of variances across 
experimental groups. The equal variance model across groups has 
been shown to agree closely with microarray data (Ishwaran and 
Rao, 2003, Ishwaran and Rao, 2005). The t-test suffers from low 
statistical power because of the assumption of normal and unimodal 

distributions for the microarray data analysis. Variations of the 
conventional t-test, SAM, and the empirical Bayes approach 
available in the Limma R statistical package, are also not free from 
the problem that gene expression values of microarray data exhibit 
significant departures from the normal distribution (Yan et al., 2005). 
We propose a method to address these problems that is robust to 
outliers or skewed data, while maintaining the advantages of the 
classical t-test or modified t-statistics. The resulting data 
transformation to fit the normality assumption increases the 
statistical power for identifying DEGs using these statistics. 

 
 

Materials and Methods 
 
Problem statement 
 

Let   be the log-expression values for a gene transcript i from 
microarray chip j, where i = 1, 2, …, m and j = 1, 2, …, n. Define a 
standardized expression level of the ith gene for a specific jth 
sample as  =  −   

 
where  = ∑    and  = ∑    . The conventional t-
test has been used to search for differences in gene expression as 
follows. We now consider a two-sample problem. Suppose that we 
collect the standardized expression levels of the ith gene from a 
normal cell and an abnormal cell. The t-test to identify the 
differential effect for a specific gene i is 
 () = , − ,, + ,

                                         (2.1) 

 
where ,, , are the sample means of   for two groups (e.g., 
cancerous and normal tissue),   and  denote the sample size 
for the group, and ,  , ,  are the sample variance for the two 
groups. In the case of equal variance, , = ,  , the test statistic 
of the t-test becomes 

Figure 1. Frequency histogram of the P-value using the Shapiro-
Wilk test for normality. The y-axis represents the frequency of probes for a 
given P-value bin. The expression value distributions of each probe were drawn 
from 5000 samples randomly selected from the Affymetrix GeneChip Human 
Genome U133 Plus 2.0 array in GEO (http://www.hcbi.nlm.nih.gov/geo/), 
accession number GPL570. The normality tests were performed using 1000 
randomly selected probes. 
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 () = , − , 1 + 1
                                          (2.2) 

 
where  denotes the pooled estimate of variance, 
  = ( − 1), + ( − 1), +  − 2  . 
 

The above procedure is required to ensure that the data   are 
normally distributed. The normality of real gene expression values 
was assessed using the Shapiro-Wilk test on 5000 microarray 
samples selected randomly from a commonly used microarray 
platform. None of the distributions of expression values for 1000 
randomly selected probes showed normality across the 5000 
microarray samples (Figure 1). Real data tend to have outliers or to 
be skewed. 

 
For this reason, the conventional t-test could not be used directly 

for identifying the differences of gene expression. We propose a 
method that is robust to outliers or skewed data, while maintaining 
the advantages of the classical or modified t-tests. The key element 
of the proposed method is to generate pseudo data that can be 
simply transformed to being very closely normally distributed. We 
then apply the conventional t-test, SAM test, and an empirical 
Bayes approach available in the Limma R statistical package to the 
pseudo data to compare the gene expression differences. As shown 
in the results section, all the tests increased the statistical power in 
both the simulated and real data analysis.  
 
Gaussian Distribution and Sample Mean 
 

Given a set of observations {, , ⋯ , }, an estimator   of 
location parameter   can be defined as the minimizer of an 
expected loss 
 argmin  ( − )() ≡ argmin 1  ( − )

  , 
 
where  is the empirical distribution function of the observations {, ⋯ , }. Therefore, if  () is differentiable with an absolutely 
continuous derivative  () , then the estimator of the location 
parameter that solves the equation is 
  ( − )

 = 0                                          (3.1) 
 

Now consider the case of () =   that corresponds to − log (), where () denotes the density of standard Gaussian 
distribution. Eq. (3.1) can be written as 

  2( − )
 = 0                                           (3.2) 

 
that provides a sample mean  = ∑   . This indicates that the 
sample mean is an optimal choice when the difference   =  −   
follows the Gaussian distribution. That is, if  ε  does not come from 
a Gaussian distribution, the sample mean may not be reasonable 
for representing the location parameter. 
 
Pseudo Data 
 

Some values of   =  −   will be very large if outliers are 
present, and the sample mean from Eq. (3.2) will be markedly 
affected by these outliers. To overcome this problem, it is natural to 

use a different  (ε), which is the same as 2  for || ≤ , and is 
negligible when || > . Then, the result from Eq. (3.1) may be 
robust to outliers. A simple choice of  () displayed in Figure 2(a) 
is 
 () =  2                || ≤    0                ℎ  . 
 

Here,    is a cutoff point that is typically chosen to be   = σ. 
The cutoff point was fixed at   =    in this study, where MAD 
is the median absolute deviation defined as MAD = 1.4826 × 
median(|x-median(x)|), and the constant    was chosen 
considering the robustness of the estimate as well as the efficiency 
at the normal distribution. More specifically, large values of   
mean that the efficiency of the estimate increases, but maintaining 
the robustness becomes more difficult. In this study, we used three 
values of   (3.5, 3.8, and 4.0) that are sufficient to cover most of 
the range of the Gaussian random variable   with a mean of 0. 
Another example of  ()  is Tukey’s biweight function (Figure 
2(b)), 
 () =    1 −                  || ≤    0                                      ℎ . 
 

Let us define pseudo data as 
  =  + ( − )2                                           (4.1) 

 
Thus, the pseudo data can be considered as a transformation 

with bounded errors so there are no outliers. The concept of pseudo 
data was introduced by Huber (Huber, 1973) and Cox (Cox, 1983) 
derived the asymptotic linearization of M-type smoothing splines 
based on pseudo data. More recently, Oh et al. (Oh et al., 2007) 
generalized Cox’s results to a general class of roughness penalties. 
To illustrate the idea of pseudo data explicitly, we consider the 
problem of obtaining the sample mean of pseudo data   that 
requires solving the equation 
  2( − )

 = 0                                          (4.2) 

 
From the definition of pseudo data, the above equation is 

equivalent to Eq. (3.1) with original values   such that 
  ( − )

 = 0                                          (4.3) 
 

We know from the derivation above, that although the original 
data contain some outliers, the sample mean computed by the 

 
Figure 2. Examples of  (): (a) simple choice of  (), and (b) 
Tukey’s biweight function. 
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pseudo data is a good representation of the true location parameter 
as the pseudo data tend to be Gaussian without outliers. Hence, we 
can use the pseudo data with the conventional t-test, SAM, and the 
empirical Bayes approach to compare the gene expression levels of 
two groups when outliers are present. 
 
 
Results & Discussion 
 
Empirical Pseudo Data and Practical Algorithm 

 
Here, we used a practical algorithm for identifying the difference 

of gene expression level in two distinct groups. The proposed 
algorithm was formed by combining the concept of pseudo data with 
traditional t-tests. In practice,    is unknown and thus the pseudo 
data of Eq. (4.1) are not available. Instead, we consider a fixed 
point analogy to pseudo data. If   is an estimate of  , we form 
the empirical pseudo data 
  =  + ( − )2                                           (5.1) 

 
As the value of   depends on the estimate  , we obtain the 

empirical pseudo data   in the following iterative manner. 
 

Starting with initial estimate  , repeat over l until convergence 
occurs: 
 

Step 1: Form    from Eq. (5.1) and 
Step 2: Compute   based on the values of . 

 
Note that we use the sample median or mean for   . We 

generated 200 random variables from the t-distribution with 3 
degrees of freedom as shown in Figure 3 to show the performance 
of empirical pseudo data. The empirical pseudo data seemed to 
follow the normal distribution even though the original observations 
did not. 

 
The proposed algorithm can be summarized as based on the 

derivation above: (1) obtain the converged empirical pseudo data 
from two groups and then compute the corresponding   , and 2) 
run the t-test, SAM, and Limma test with  . Note that the above 
procedure can be easily used for identifying the differences in gene 
expression under several conditions (tissues) using a correction 
method for multiple tests, such as that described by Benjamini and 
Hochberg (Benjamini and Hochberg, 1995) 
 
Simulation Study 
 

This section investigates the practical performance of the 
proposed method. We compared the proposed robust method to 
these existing methods: (i) the conventional t-test of (2), (ii) the 
proposed robust method with ()  and c=3.8 and sample 
variance in the second step, (iii) Limma reported by Smyth (Smyth, 
2004), and (iv) SAM reported by Tusher et al. (Tusher et al., 2001). 
Note that the multiple test correction of Benjamini and Hocberg (15) 
was used for comparison when the proposed method was 
implemented. In addition, the sample median was used for the initial 
estimate , and the sample means were used for  . Now, we 
generate artificial data that represent real data with 10,000 genes 
and 10 chips. We create data based on a gene platform to integrate 
realistic gene expression data. First, we define the null set as 

 ↓ = max↓ − min↓↓ + ↓ + ↓                     (6.1) 
 
where   are generated from distribution ∑  ,  ~(0,1) 

and  ~ 0, ,       and     . 

Here,  min↓ , max↓ , μ↓ and   denote the minimum, maximum, 
mean, and variance of the gene, respectively, which are selected 
randomly in the Affymetrix GeneChip Human Genome U133 Plus 
2.0 Array GPL570 platform in GEO. That is,    represent real 
genes with three different types of independent and identical errors 
from the standard Gaussian distribution, the t-distribution and   
distribution, respectively. Note that the setting of generation    
was used by Cui et al. (Cui et al., 2005). The last two types 
represent the cases in which outliers are present and the data come 
from a skewed distribution. We calculate the empirical power that is 
defined in the following steps for assessing the performance of each 
method: 
 

(1) Randomly select a gene in the gene platform and compute 
the minimum, maximum, mean, and variance of the selected 
gene, 

(2) Generate data from the set of    according to distribution  
  ∑  , 

(3) Generate data from the null set of  , 
(4) Obtain data to represent alternatives shifting by a value of a 

specified distance, 
(5) Apply each method to the data generated in steps (1) and (2), 
(6) Compute the adjusted P-value, and 
(7) Calculate the empirical power where     = #    < 0.05  

after repeating steps (1)–(4) n times. Figure 4 shows the 
empirical power of each method according to different distance 
specified in step (2). 

 
We obtain the following empirical observations from the 

simulation results: (i) The empirical power of the proposed method 
is comparable or superior to those of the classical t-test, Limma, 
and SAM for the Gaussian error case. (ii) The proposed method 
outperforms the classical t-test, Limma, and SAM for the non-
Gaussian case. (iii) For all cases, the proposed robust approach 
provides the best performance when the distance is not large. 

 
Overall, the simulation results suggest that the proposed method 

is preferable for identifying differences in gene expression data that 
come from various distributions. Note that the results of the 

 
Figure 3. Performance of the empirical pseudo data, from left to 
right, top to bottom: histogram of the original observation and its Q-
Q plot, and histogram of the empirical pseudo data and its Q-Q plot. 
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proposed method with different values of  and initialization are 
similar, and are thus omitted. Figure 4 shows the simulation results 
for empirical power as a function of distance with 10 replications for 
each distribution type with sample sizes of 3, 6, and 9. In all cases, 
the empirical powers using the pseudo sampling method were 
superior to the power of each statistic without pseudo sampling. 
This was especially so for the non-Gaussian case and a small 
sample size. We also examined the type-I error rate for each case 
with a set of simulated data without a given distance. The type-I 
error rates were similar for the tests with and without pseudo 
sampling, and were sufficiently close to zero to be negligible. 
 
Performance on Microarray Data 
 

Real data sets used in this study consisting of raw data of ten 
ovarian endometriosis and ten matched control endometrium 
(Hever et al., 2007) were downloaded from the Gene Expression 
Omnibus (GEO) database (http://www.hcbi.nlm.nih.gov/geo/) 
(accession no. GSE7305). From the ovarian endometriosis and 
control endometrium samples, N (=3,4,5) samples were randomly 
selected 10 times, and compared using the ordinary t-test, Limma, 
t-test (ps-data), and Limma (ps-data) with a significance threshold 

of P<0.05. The probes that were identified as significantly up- or 
down-regulated were counted for each statistical model. The real 
data analysis showed results similar to the simulation study, i.e., 
each statistical test showed superior statistical power when it was 
combined with the pseudo sampling method (Figure 5). In 
ascending order, the empirical power of the tests seemed to be: 
ordinary t-test, t-test with pseudo sampling, Limma test, and Limma 
test with pseudo sampling. The empirical power result of the real 
data analysis agrees with the simulation result. Thus, in general, the 
Limma package combined with our pseudo sampling algorithm 
provided the best empirical power. The real microarray data used 
here was such that many DEGs could be identified with small 
sample sizes. However, many researchers have experienced 
frustration in not finding any DEGs in their microarray data. 
Replication is a straightforward method for improving the quality of 
inferences made from experimental studies, and is clearly 
necessary in microarray experiments. A trade-off between cost and 
statistical power frequently arises in gene expression microarray 
experiments because such experiments are costly and involve RNA 
samples that are often difficult to obtain (Pavlidis et al., 2003). It is 
recommended that a minimum of 5 biological cases per group be 
analyzed (Allison et al., 2006) for designs in which two groups of 
cases are evaluated for differential expression. This sample size is 
considered a minimum, not an optimum, and applies only to 
differential expression testing for two groups of cases, not 
classification (Allison et al., 2006, Pavlidis et al., 2003, Tsai et al., 
2003). However, there have been a number of reports based on 
less than 5 biological samples per group. Therefore, increasing the 
statistical power for microarray data analysis is crucial not only for 
two-group studies, but also for comparison of several groups and 
time-series data analysis. 
 
Conclusion and Prospects 
 

We propose a method to address these problems that is robust to 
outliers or skewed data, while maintaining the advantages of the 
classical t-test or modified t-statistics. The resulting data 
transformation to fit the normality assumption increases the 
statistical power for identifying DEGs using these statistics. The 
proposed algorithm has several advantages. First, it can be easily 
implemented. Second, it can be extended to the analysis of 
variance for comparing gene expression levels of several groups 
simultaneously. Third, the proposed method can be applied to a 
quantile comparison of gene expression levels that provides a more 
complete view of the statistical data landscape. 
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