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Abstract
Parametric method of flood frequency analysis involves fitting of a probability distribution to observed flood

data. When record length at a given site is relatively shorter and hard to apply the asymptotic theory, an alternative
distribution to the generalized extreme value (GEV) distribution is often used. In this study, we consider the
beta-P distribution (BPD) as an alternative to the GEV and other well-known distributions for modeling extreme
events of small or moderate samples as well as highly skewed or heavy tailed data. The L-moments ratio diagram
shows that special cases of the BPD include the generalized logistic, three-parameter log-normal, and GEV
distributions. To estimate the parameters in the distribution, the method of moments, L-moments, and maximum
likelihood estimation methods are considered. A Monte-Carlo study is then conducted to compare these three
estimation methods. Our result suggests that the L-moments estimator works better than the other estimators for
this model of small or moderate samples. Two applications to the annual maximum stream flow of Colorado and
the rainfall data from cloud seeding experiments in Southern Florida are reported to show the usefulness of the
BPD for modeling hydrologic events. In these examples, BPD turns out to work better than beta-κ, Gumbel, and
GEV distributions.
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1. Introduction

Estimations of the upper extreme quantiles corresponding to low probabilities of exceedance are
needed in risk analysis, extreme value analysis, and reliability engineering (Castillo et al., 2005).
Some well-known distributions have been used to model the extreme values associated with the tail
distribution. These include the generalized extreme value (GEV), generalized Pareto, generalized
logistic (GLO), Pearson type-3 (PE3), beta-κ, and three-parameter log-normal (LN3) distributions.
GEV distribution is widely used for modeling extreme events because it is supported by asymptotic
theory; however, it has limitations when applied to small or moderate sample data (for example, Hosk-
ing and Wallis (1997)). In real flood frequency analysis in the United Kingdom, the aforementioned
(GEV, GLO, PE3, LN3) distributions were selected most often as the best fitted model (Institute of
Hydrology, 1999), which was confirmed by Kjeldsen and Prosdocimi (2015). A problem with this
approach is that different distributions may be selected and applied for nearby sites, which may pro-
duce non-smooth quantile estimates over a region. Thus, to overcome this problem, it is desirable to
use one flexible distribution that covers the above four models. The beta-P distribution (BPD) studied
here is such a flexible model. Actually the L-moments ratio diagram (Hosking and Wallis, 1997) of
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the BPD turns out in this study to include those of GEV, GLO, LN3, and (part of) PE3 distributions
as special cases.

The BPD and beta-κ distribution were introduced by Mielke and Johnson (1974) as special cases
of the generalized second kind beta distribution. Wilks (1993) evaluated the performance of nine
three-parameter distributions, including the aforementioned models, and found that the beta-κ distri-
bution and BPD worked the best for extreme daily rainfall data in the United States. A detailed study
of the beta-κ distribution was already reported by Murshed et al. (2011). However, no systematic
study on the BPD has been reported. In this study, we focus on the systematic study of this distri-
bution and its applicability for modeling hydrologic events. To estimate the parameters of the BPD,
we use three methods: method of moments estimation (MME), L-moments estimation (L-ME), and
maximum likelihood estimation (MLE). While the MLE is sensitive to outliers from the assumed pop-
ulation distribution especially for small samples, it is optimal for large samples. The L-ME proposed
by Hosking (1990) has been shown to have robust performance compared with MME and MLE, par-
ticularly for small samples. The detailed derivations of the moments and L-moments for the BPD are
provided in this study.

One goal of the present study is to illustrate the feasibility of the BPD in dealing with hydrologic
events. Two real applications using the annual maximum stream flow data of Colorado and rainfall
data from cloud seeding experiments in Southern Florida are illustrated. The comparison with other
models such as the beta-κ, GEV, and Gumbel distributions shows that the BPD with the L-ME per-
forms better than those distributions, particularly in small and skewed samples. This suggests that the
BPD can be a useful alternative to GEV and other well-known distributions.

The remainder of the paper is organized as follows. Section 2 defines the BPD and presents its
properties including moments. Section 3 describes the estimation methods. The simulation study
is presented in Section 4. Section 5 illustrates the effectiveness of the distribution using real data
examples. The discussion and conclusion are in Section 6.

2. Beta-P distribution

2.1. Definition

The BPD was given as a special case of the generalized second kind beta distribution (Mielke and
Johnson, 1974). The cumulative distribution function (cdf) and the probability density function (pdf)
of the BPD are

F(x) = 1 −
1 + (

x
β

)θ−α , x ≥ 0, (2.1)

f (x) =
αθ

β

(
x
β

)θ−1 1 + (
x
β

)θ−(α+1)

, x > 0, (2.2)

respectively, where α, β, θ > 0. Here, α and θ are the two shape parameters, and β is the scale
parameter. There is no location parameter. The quantile function of the BPD is

x(F) = β
[
(1 − F)−

1
α − 1

] 1
θ
, 0 < F < 1. (2.3)

Figure 1 illustrates the shapes of the beta-P pdf for some specified values of (α, θ) and β = 1
(because β is an invariant scale parameter). When α > 1 and θ > 3 hold, the pdf exhibits light tails
(Figure 1(a)), but heavy tails (Figure 1(b)) when 0.5 ≤ α < 1.0 and 0 < θ ≤ 3.5 hold. When α = 1,
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Figure 1: Shapes of the probability density functions of the beta-P distribution as the shape parameters α and θ
change, but β = 1.

the BPD is the same as the GLO distribution (Ahmad et al., 1988). The CDF of the GLO distribution
is F(x) = [1 + (x/β)−θ]−1, which is the same as that in (2.1) when α = 1. The GLO distribution has
been used widely for flood frequency analysis (Hosking and Wallis, 1997). As an generalized model
of the GLO distribution, the BPD is also widely usable for flood frequency analysis. The closed form
of the BPD provides better computational facility with the order statistic distribution than the gamma
and log-normal distributions do. Sometimes, it is possible to be interested in the asymptotics of the
sample extreme order statistics of the distribution. Identification of the feasible limiting distribution
of the maxima (minima) is given in the Appendix.

2.2. Moments

Let µ′r be the rth order population moment about zero for the BPD. Then, µ′r is given by

µ′r = E(Xr) = αβrB
(
1 +

r
θ
, α − r

θ

)
= αβrhr(α, θ), αθ > r, (2.4)
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where hr(α, θ) = B (1 + r/θ, α − r/θ), for r = 1, 2, . . . , and B(·) is a beta function. Note that the
moments exist when −θ < r < αθ.

2.3. L-moments

The parameter estimates obtained from L-moments are sometimes more accurate in small samples
than using MME or MLE (Hosking, 1990). As a result, L-ME has received considerable attention
for analyzing skewed data or extreme data, such as extreme rainfall, flood frequency, and extreme
wind speed data. See Hosking (1990) for a definition of L-moments as well of its properties and
applications. Let λr be the rth L-moment of the BPD. To calculate λr, we need a special case of the
rth probability weighted moment (Greenwood et al., 1979):

pr = E[X{1 − F(X)}r] = αβ B
(
rα + α − 1

θ
, 1 +

1
θ

)
, (2.5)

for r = 0, 1, 2, . . .. Then, λr is obtained by using the relation between λr and pr (Hosking, 1990), for
αθ > 1 as,

λ1 = p0 = αβk1, λ2 = p0 − 2p1 = αβ(k1 − 2k2), (2.6)
λ3 = p0 − 6p1 + 6p2 = αβ(k1 − 6k2 + 6k3), (2.7)
λ4 = p0 − 12p1 + 30p2 − 20p3 = αβ(k1 − 12k2 + 30k3 − 20k4), (2.8)

where

k j = Γ

(
−1
θ
+ jα

)
Γ

(
1 +

1
θ

) /
Γ( jα + 1), (2.9)

where Γ(·) is a gamma function, for j = 1, 2, 3, 4.
A convenient way of representing the L-moments of different distributions is the L-moments ratio

diagram, exemplified by Figure 2. This diagram shows the L-moments on a graph whose axes are
L-skewness and L-kurtosis. A two-parameter distribution with a location and a scale parameter plots
as a single point, while a three-parameter distribution with location, scale and shape parameters plots
a line. Distributions with more than one shape parameters generally cover two-dimensional areas on
the graph (Hosking and Wallis, 1997). The shaded area of Figure 2 represents the L-skewness and
L-kurtosis values attained from the BPD for all possible combinations of α and θ. This figure was
drawn by using the “lmrd” function of the R package “lmom” developed by Hosking (2014). Note
that in Figure 2, the GEV and LN3 distributions are located inside the shaded area. The upper part
of the shaded area includes the GLO distribution line achieved when α = 1. The PE3 distribution
is partly included in the area. This suggests that the beta-P model has wider applications than the
aforementioned four (GEV, GLO, PE3, LN3) distributions have.

The L-moment ratio diagram is used as a tool for aiding in the identification of a suitable frequency
distribution to model the available samples. It typically plots the sample L-kurtosis against the sample
L-skewness values and compare these to equivalent theoretical relationships derived for a range of
candidate distributions. The closeness of the sample values to the theoretical lines or areas can then
be used as a selection criterion for the most appropriate type of distribution (Peel et al., 2001). The
points in Figure 2 are the sample L-skewness and sample L-kurtosis of the annual maximum daily
precipitation for 57 weather stations of South Korea (Park et al., 2011; Seo et al., 2015). Most points
lie within or close to the shaded region drawn by the BPD. To fit these data well, one may recommend
using the BPD instead of using the GEV, GLO, PE3, or LN3 distributions separately.



Use of beta-P distribution for modeling hydrologic events 19

Figure 2: The L-moment ratio diagram for the BPD. The shaded area shows the L-skewness and L-kurtosis
values attained from the BPD, in which the GEV and LN3 distributions are inside the area. The upper part of the
shaded area includes the line for the GLO distribution, which is achieved when α = 1 in the BPD. The points are
the sample L-skewness and sample L-kurtosis of annual maximum daily rainfall for 57 weather stations in South
Korea. BPD = beta-P distribution; GEV = generalized extreme value; LN3 = three-parameter log-normal; GLO
= generalized logistic; E = exponential; G = Gumbel; L = logistic; N = normal; U = uniform; GPA = generalized

Pareto; PE3 = Pearson type 3.

The higher-order L-moments, known as LH-moments (Wang, 1997), provide another way in
which to estimate the parameters. This method has been used by Murshed et al. (2014), and Busaba-
bodhin et al. (2016). The LH-moments for the BPD are given in Murshed et al. (2009).

3. Estimation methods

3.1. Method of moments estimation

The MME can be obtained by equating the first three population moments of the BPD with the cor-
responding sample moments. Let m′r be the rth order sample moment about zero, given by m′r =
n−1 ∑n

i=1 xr
i ; r = 1, 2, . . .. To derive the estimates, we consider the following two functions of the first

three population moments;

µ′2
(µ′1)2 =

Γ(α) Γ(1 + 2/θ) Γ(α − 2/θ)
[Γ(1 + 1/θ) Γ(α − 1/θ)]2 = g(α, θ), for αθ > 2, (3.1)

µ′3
(µ′1)3 =

[Γ(α)]2 Γ(1 + 3/θ) Γ(α − 3/θ)
[Γ(1 + 1/θ) Γ(α − 1/θ)]3 = h(α, θ), for αθ > 3. (3.2)
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The MME of α and β, say α̃ and β̃, are obtained by equating these functions to the corresponding
sample moment functions and thus by solving the following system of equations; g(α̃, θ̃) = m′2/(m

′
1)2

and h(α̃, θ̃) = m′3/(m
′
1)3. These equations are the functions of the two shape parameters, α and θ. It is

solved by using a two-dimensional Newton-Raphson method. An estimate of the scale parameter (β̃)
is obtained by substituting α̃ and θ̃ into another equation, which is

β̃ =
m′1 Γ (α̃)

Γ
(
1 + 1/θ̃

)
Γ
(
α̃ − 1/θ̃

) .
3.2. Method of L-moments estimation

Let lr be the rth sample L-moment. Similar to the MME, the L-ME of α and β, say α̂ and β̂, are
obtained by equating the population L-moments (λr) to the corresponding sample L-moments. The
sample L-skewness and sample L-kurtosis are written as t3 = l3/l2 and t4 = l4/l2, respectively. To
obtain the L-ME, we solve the following system of equations with respect to α and θ: τ3 = t3 and
τ4 = t4, under the restriction αθ > 1, where τ3 and τ4 are the population L-skewness and L-kurtosis,
respectively. We again use a two-dimensional Newton–Raphson algorithm. An estimate of the scale
parameter (β̂) is obtained by substituting (α̂, θ̂) into (2.6), which is β̂ = l2/[α̂(k1 − 2k2)], where k1 =

k1(α̂, θ̂) and k2 = k2(α̂, θ̂) are given as in (2.9).

3.3. Maximum likelihood estimation

For a given sample (x1, x2, . . . , xn) from a BPD, the log-likelihood function is

log L = n logα + n log θ + (θ − 1)

 n∑
i=1

log xi

 − nθ log β − (1 + α)
n∑

i=1

log
[
1 +

(
xi

β

)α]
, (3.3)

for α > 0, β > 0, and θ > 0 as well as for min(x1, . . . , xn) > 0. To compute the MLE, we maximize
(3.3) numerically with respect to parameters. We used the Fortran program supplied by Professor
Wilks. It uses the Levenberg-Marquardt method, which may be viewed as a generalization of the
Newton-Raphson algorithm (Wilks, 1993).

4. Simulation study

We conducted Monte-Carlo simulations to investigate the performance of the three estimation meth-
ods (MME, L-ME, MLE) for high-quantile estimation. We generated random samples from the BPD
by using the inverse transformation method. Sample sizes are n = 20, 30, 50, 100, and 200. For each
sample size, 2,000 trials were conducted.

To examine the performance of the estimation methods, we used two measures: the relative bias
(Rbias) and relative root mean squared error (RRMSE). These are

Rbias =
1
M

M∑
j=1

qe
j − qt

j

qt
j

 , (4.1)

RRMSE =

√√√√
1
M

M∑
j=1

qe
j − qt

j

qt
j

2

, (4.2)
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Figure 3: The Rbias and RRMSE plots of L-ME and MLE for different combinations of the shape parameters and
sample sizes. Rbias = relative bias; RRMSE = relative root mean squared error; L-ME = L-moments estimator;

MLE = maximum likelihood estimator.

where qe
j and qt

j are the estimated and true quantiles, respectively, and M is the successful convergence
number among the 2,000 trials for each of the three estimation algorithms. The Rbias and RRMSE
were calculated for two combinations of the shape parameters, namely α = 0.5, θ = 3.5 and α =
0.5, θ = 7.5, with a unit scale parameter. That is, we set β = 1.0 without loss of generality, because
all estimation methods are scale equivariant for β. The Rbias and RRMSE were calculated for five
upper quantiles, q0.90, q0.95, q0.99, q0.995, and q0.999, using the above three methods. In addition, we
used the average scaled absolute error (ASAE) to judge the overall goodness of fit, as in Castillo et al.
(2005):

ASAE =
1
n

n∑
i=1

∣∣∣x(i) − x̂(i)
∣∣∣

x(n) − x(1)
, (4.3)

where x(i) is the ascending ith order observation and x̂(i) are the pi-quantile estimates obtained from
the quantile function (2.3), for pi = i/(n + 1). To calculate x̂(i), the MLE or L-ME of the parameters
was plugged into the quantile equation (2.3), as in (5.1) in the next section.

Figure 3 displays the upper-quantile Rbias and RRMSE for the samples of size n = 30, and 100.
Figure 3(a) shows that most of the upper-quantile Rbias values of L-ME are smaller than those of
MLE. The upper-quantile RRMSE values of L-ME are smaller than those of MLE for p > 0.95,
particularly in the case of n = 30. The Figure 3(b) indicates that no one method is superior to the
others in terms of both the Rbias and the RRMSE. No results were obtained for MME in the Figure
3(a) because the multiplication of the two shape parameters α and θ yields αθ = 0.5 × 3.5 = 1.75,
which violates the restriction of (3.1), αθ > 2. In the Figure 3(b), MME achieves good performance
for the combination of parameters (α = 0.5, θ = 7.5). The performance of L-ME is better than that
of MLE and MME, particularly in small samples. However, it sometimes fails to reach a solution for
the equations, particularly for small samples. This may be partially because there is no solution inside
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Figure 4: Boxplots of the ASAE values, using LME and MLE for various sample sizes (n = 20, 50, 100, 200)
when the parameters are fixed as α = 0.5, θ = 3.5, and β = 1.0 for the heavy-tailed beta-P distribution. ASAE =

average scaled absolute error; LME = L-moments estimator; MLE = maximum likelihood estimator.

the feasible region αθ > 1. For the moderate sample (n = 100), it is hard to see a global superiority
between L-ME and MLE. For the large sample (n = 200, not presented in the figure), MLE works
better than L-ME.

Figure 4 presents the boxplots of the ASAE, which were computed from 2,000 Monte-Carlo trials
for n = 20, 50, 100, and 200. This figure shows that L-ME performs better than MLE, particularly
for small samples, which is consistent to the previous result for different distributions (Murshed et al.,
2011; Park et al., 2009). In the combination (α = 0.5, θ = 3.5), no MME is reported because of the
constraint (3.1). The overall performance of L-ME is superior to the other two methods, particularly
for small sample and for skewed data.

5. Real data examples

5.1. Stream flow data in Colorado

This example is based on time series data that consists of annual maximum stream flow amounts in
cubic feet per second. Data were obtained from the U.S. Geological Survey (USGS) station 06714310
(Sand Creek tributary at Denver, Colorado). It covers 22 years from May 1 to August 31 between 1971
and 1992; however, the sample size is 21 years because the records for 1989 are missing. The data is
accessed through the USGS website, nwis.waterdata.usgs.gov (U.S. Geological Survey, 2010).

The MLE and L-ME of the respective parameters for some distributions (i.e., GEV, Gumbel, beta-
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Table 1: Parameter estimates of the Gumbel, GEV, beta-P, and beta-κ distributions, using theL-ME and the
MLE methods for annual maximum stream flow data of Colorado and rainfall data of Southern Florida.

Distribution Parameter Stream flow data Rainfall data
MLE L-ME MLE L-ME

µ̂ 121.50 128.70 113.80 135.70
GEV σ̂ 84.10 98.40 145.80 184.90

ξ̂ 0.46 −0.24 0.91 −0.53

Gumbel µ̂ 145.40 140.90 211.50 200.60
σ̂ 109.40 130.00 309.60 418.20
β̂ 242.00 259.40 973.20 1290.60

beta-P α̂ 1.71 1.83 3.10 3.80
θ̂ 1.93 1.87 0.88 0.82
β̂ 109.59 266.16 382.19 767.66

beta-κ α̂ 1.69 0.39 0.53 0.23
θ̂ 1.89 2.89 1.51 2.02

GEV = generalized extreme value; L-ME = L-moments estimation; MLE = maximum likelihood estimation.

Table 2: K-S and A-D goodness-of-fit test statistics with p-values in brackets, using the Gumbel, GEV, beta-P,
and beta-κ distributions via the MLE and L-ME

Estimation Criterion Distribution Stream flow data Rainfall data

MLE

K-S

GEV 0.134 (0.809) 0.111 (0.905)
Gumbel 0.178 (0.467) 0.221 (0.159)
beta-P 0.133 (0.811) 0.081 (0.996)
beta-κ 0.171 (0.516) 0.089 (0.985)

A-D

GEV 0.504 (0.741) 0.319 (0.923)
Gumbel 0.525 (0.719) 2.042 (0.088)
beta-P 0.385 (0.862) 0.213 (0.986)
beta-κ 0.479 (0.765) 0.233 (0.979)

L-ME

K-S

GEV 0.134 (0.800) 0.087 (0.989)
Gumbel 0.143 (0.733) 0.247 (0.083)
beta-P 0.127 (0.845) 0.116 (0.870)
beta-κ 0.176 (0.481) 0.147 (0.631)

A-D

GEV 0.380 (0.867) 0.326 (0.917)
Gumbel 0.513 (0.731) 2.167 (0.075)
beta-P 0.372 (0.875) 0.276 (0.953)
beta-κ 0.637 (0.611) 0.669 (0.583)

K-S = Kolmogorov-Smirnov; A-D = Anderson-Darling; GEV = generalized extreme value; MLE = maximum likelihood
estimation; L-ME = L-moments estimation.

P, and beta-κ) and dataset combinations are displayed in Table 1. Two goodness-of-fit measures,
namely Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D), along with the p-values in Table
2. It indicates that the BPD fits the data better than the GEV, Gumbel, and beta-κ distributions do.
In addition, two information criteria, namely the AIC and BIC (Table 3). For these statistics, a lower
value represents a better fit. This table shows that the BPD has better capability to fit the data than the
GEV, Gumbel, and beta-κ distributions do.

Figure 5 shows the estimated return levels (in cubic feet per second), using the L-ME method,
with a 95% confidence interval. Here, the T -year return levels are obtained by substituting parameter
estimates into the quantile function (2.3) as the (1 − 1/T ) quantile of the distribution:

R̂T = β̂

{1 −
(
1 − 1

T

)}− 1
α̂

− 1


1
θ̂

. (5.1)
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Table 3: AIC and BIC values for the Gumbel, GEV, beta-κ, and beta-P distributions, calculated from stream
flow data of Colorado and rainfall data of Southern Florida, where k is the number of parameters in distribution
and ln L is the log likelihood function value.

Data Distribution k ln L AIC BIC
GEV 3 −131.48 268.96 272.09

Stream flow Gumbel 2 −133.14 270.28 272.37
beta-P 3 −131.49 268.98 272.11
beta-κ 3 −131.61 269.22 272.35
GEV 3 −183.35 372.70 370.95

Rainfall Gumbel 2 −194.48 392.96 391.79
beta-P 3 −181.58 369.16 367.41
beta-κ 3 −181.69 369.38 373.15

AIC = Akaike information criterion; BIC = Bayesian information criterion; GEV = generalized extreme value.

(a) (b)

Figure 5: The approximated 95% confidence intervals (dotted lines) of the predictive return levels obtained by
using L-ME for the beta-P distribution (a) and for the GEV distribution (b) for stream flow data of Colorado. The
beta-P distribution provides a smaller confidence interval than the GEV distribution does. L-ME = L-moments

estimator; GEV = generalized extreme value.

The T -year return level RT is expected to be exceeded, on average, once every T years (Castillo et
al., 2005). The approximated 95% confidence interval of RT is obtained using (R̂T ± 1.96 × seB),
where seB is the standard error of R̂T calculated by using the bootstrap method. In Figure 5, the BPD
provides a shorter confidence interval than the GEV distribution does. Overall, we can say that the
BPD describes the stream flow data better than the Gumbel, beta-κ and GEV distributions.

5.2. Rainfall data in Southern Florida

This example consists of 26 rainfall amounts (units in acre-feet) from seeded clouds of experiments
conducted in Southern Florida (Simpson, 1972). It is based on radar-evaluated rainfall data from 52
Southern Florida cumulus clouds. Mielke and Johnson (1974) used this data to evaluate the perfor-
mance of beta-P, beta-κ, gamma, and log-normal distributions.

Based on the K-S and A-D test criteria, the BPD is better in most cases (Table 2). In addition,
the results from the AIC and BIC in Table 3 suggest the better fitting ability of the BPD to the data
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compared with the GEV, beta-κ, and Gumbel distributions. The overall performance of the Gumbel
distribution is worse than that of the other three distributions used in this study to describe both annual
maximum stream flow and rainfall data.

6. Summary and discussion

In this study, we examined the beta-P distribution (BPD) for modeling hydrologic events. The BPD,
which is a particular case of the generalized second kind beta distribution, seems to be a representative
model to describe extreme rainfall data (Wilks, 1993). However, no systematic study of this topic has
been conducted. We bridge this gap in the literature, using three estimation methods (MME, L-ME,
and MLE), and find the following main results:

1. The presented simulation study suggests that the BPD via the L-ME is satisfactory.

2. The L-moment ratio diagram implies that the BPD has wider applications than the GLO, LN3,
PE3, and GEV distributions.

3. Our findings suggest that the BPD can be a useful alternative to the GEV, GLO, PE3, and LN3
distributions for modeling (extreme) hydrologic events.

The BPD has no location parameters; rather, it has two shape parameters (α and θ) and one scale
parameter (β). The lack of a location parameter can be a disadvantage of this distribution. Thus,
adding a location parameter would form a four-parameter BPD, which might be an interesting topic
of future research. In addition, the modified inverse moment estimation (Gui, 2016) can be applied to
this distribution.
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Appendix: Asymptotics of extreme statistics of the beta-P distribution

If X1, . . . , Xn are random samples from the beta-P distribution (BPD) and if X̄n = (X1 + · · · + Xn)/n
denotes the sample mean, then, following the central limit theorem,

√
n(X̄n − E(X))/

√
Var(X) con-

verges in distribution to the standard normal distribution as n → ∞, except when the population
distribution possesses too heavy a tail. Sometimes, rather than the sample average, one would be in-
terested in the corresponding asymptotics of the sample extreme statistics, Mn = max(X1, . . . , Xn) and
mn = min(X1, . . . , Xn). According to extreme value theory (e.g., Castillo et al., 2005), only the feasible
limit distribution for the maxima (minima) of any continuous distribution is the maximal (minimal)
GEV distribution, which includes the well-known Weibull, Gumbel, and Fréchet distributions as spe-
cial cases. Identifying the limiting distribution in the latter three distributions is known as the domain
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of attraction problem, for the given cdf F(x). To solve this problem for the BPD, we use Theorem 9.5
(for maxima) and Theorem 9.6 (for minima) in Castillo et al. (2005).

Suppose X1, X2, . . . , Xn are random samples of size n, drawn from a BPD. For the quantile function
(2.3), we have

lim
ϵ→o

x(1 − ϵ) − x(1 − 2ϵ)
x(1 − 2ϵ) − x(1 − 4ϵ)

= 2
1
αθ , αθ > 0, (6.1)

lim
ϵ→o

x(ϵ) − x(2ϵ)
x(2ϵ) − x(4ϵ)

= 2−
1
θ , θ > 0, (6.2)

where α and θ are the shape parameters of the associated limit distribution. The above quantities (6.1)
and (6.2) are crucial points for determining the domain of attraction. Hence, Theorems 9.5 and 9.6 and
(6.1) and (6.2) imply that the BPD belongs to the Fréchet maximal and Weibull minimal domains of
attraction. The maxima (minima) of the BPD asymptotically forms the Fréchet (Weibull) distribution.
The form of the norming constants an, bn, cn, and dn can also be determined using Theorems 9.5 and
9.6 in Castillo et al. (2005). The possible selections of constants are

an = 0 and bn = F−1
(
1 − 1

n

)
= β

{1 −
(
1 − 1

n

)}− 1
α

− 1


1
θ

,

cn = inf(x|F(x) > 0) = 0 and dn = x
(

1
n

)
− cn = β

(1 − 1
n

)− 1
α

− 1


1
θ

.
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