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Abstract

We developed the projected l-axial skew-normal(LASN) family of distributions for l-axial data. The LASN
family of distributions contains the semicircular skew-normal(SCSN) and the circular skew-normal(CSN)
families of distributions as special cases. The LASN densities are similar to the wrapped skew-normal den-
sities for the small values of the scale parameter. However CSN densities have more heavy tails than those
of the wrapped skew-normal densities on the circle. Furthermore the CSN densities have two modes as the
scale parameter increases. The LASN distribution has very convenient mathematical features. We extend
the LASN family of distributions to a bivariate case.

Keywords: Projection, skewed l-axial data, l-axial distribution, bimodality.

1. Introduction

Circular data are encountered frequently in the fields of astronomy, biology, geology, medicine and
meteorology, such as when investigating the origins of comets, solving bird navigational problems,
interpreting paleomagnetic currents, assessing variations in the onset of leukemia and analyzing
wind directions.

However, modeling circular data on a full circle is sometimes unnecessary. This may occur if the
subject of interest is the strike of bedding or the orientation of land forms, such as drumlins.
Therefore, rather than a single-headed vector, the observation is actually a double-headed vector.
When measuring a strike, for example, N45W and S45E are the same. A similar example is a
sea turtle emerging from the ocean in search of a nesting site on dry land. These data are called
semicircular data.

As most circular distributions are applicable for observations modulo 27, another distribution must
be assumed. To model semicircular data, there are two symmetric distribution versions. One was
developed by Jones (1968) and is essentially a simple transformation of a circular normal distribu-
tion. The other is the semicircular normal(SCN) distribution developed by Guardiola (2004). This
distribution is obtained by projecting a normal distribution over a semicircular segment.
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143-701, Korea. E-mail: hmkim@konkuk.ac.kr
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Although symmetrically distributed (semi) circular data are rare (Mardia and Jupp, 2000), most
work (Jammalamadaka and SenGupta, 2001; Fisher, 1993) has been developed for symmetrical
models. Recently, there has been increasing interest in models for skew linear data. Azzalini (1985)
provided results for the skew-normal distribution on a line, and Azzalini and Dalla Valle (1996) and
Azzalini and Capitanio (1999) considered the multivariate extension of the distribution. Similar to
Guardiola (2004}, we project a skew-normal distribution over a semicircular segment. The resulting
distribution is called the SCSN distribution. Furthermore it is extended to the LASN distribution
by a simple transformation. Sometimes, measurements result in any arc of arbitrary length, say
2r/l,1=1,2,.... So the LASN family of distributions contains the SCSN and the CSN families of
distributions as special cases. Furthermore the SCSN distribution contains the SCN distribution
{Guardiola, 2004) as a special case when the shape parameter equals 0.

Recently, some skewed circular models have been developed. Pewsey (2000a, 2006) developed the
wrapped skew-normal distribution on a circle. Pewsey {(2008) nicely introduced the four-parameter
wrapped stable family of unimodal distributions as a highly flexible model for directional data
observed on the unit circle. Jammalamadaka and Kozubowski (2004) obtained the wrapped expo-
nential distribution and the wrapped Laplace distribution on a circle. For the comparison purpose,
some figures are plotted. Based on these figures, we find the followings. The LASN densities are
similar to the wrapped skew-normal densities for the small values of a parameter ¢. However CSN
densities have more heavy tails than those of the wrapped skew-normal densities on the circle.
Furthermore the CSN densities have two modes as a parameter ¢ increases. One more useful fact
is that the LASN distribution can also handle [-axial data.

Section 2 defines the distribution and lists some of its basic properties. In Section 3, we estimate
parameters of the LASN distribution using a maximum likelihood method. Two examples are also
given. The paper concludes in Section 4 with an extension of the LASN distribution: the bivariate
version.

2. The Class of Projected I-Axial Skew-Normal Distributions

2.1. Definition and some basic properties

The SCSN distribution is obtained by projecting a skew-normal distribution over a semicircular
segment. Let X have a skew-normal distribution with location parameter 0, scale parameter ¢ and
shape parameter A, i.¢., the density of X is
25(2)e(22), -co<w<om, o R, AER, 2.1)
o’ \o o
where ¢ and @ are the standard normal density and distribution function, respectively. For brevity,
we shall also say that X is SN(0,0%,)). For a positive real number r, define the angle ¢ by

6 = tan™" (x/r), where 8 € (—n/2,7/2). Hence, z = rtan(f). Obviously, the pdf of  is given by

2 tan() tan(6) c ™ w

z 0 by =2 ——<f< = 2.2

ws“()‘é(v)@( o ) v=o T3 <i<j (2.2)
QOccasionally, measurements result in any arc of arbitrary length, say 27/, 1 = 1,2,..., so it is

desirable to extend the SCSN distribution. To construct the LASN distribution, we consider the
pdf (2.2) and use the transformation 6* = 26/1,1 =1,2,.... The pdf of 8" is given by

IR P tan(l6"/2) tan{l6*/2) ™ . T
;sec (16 /2)¢< " )@(A ” ), -7 < 0 <7 (2.3)




I-Axial Skew-Normal Distribution 881

; 0 | RN
o - © ! ~\.
<
pg
— o - ~ ("J -
2 o o
4 o]
| . [=]
5 -
o - .‘V‘ O -
T T aa— T T T e
-3 -2 - 0 1 2 3
(%] (¢]
(a) (b)
n
S 9
L “\ -
< A
pg
(o]
m I
Q
I~ 5
T o =
o 0
9
g
o | Q
R T AN e e m— T S YT T T T T 1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
0 9
() (d)

Figure 2.1. CSN densities for different values of A and . For each plot the line types correspond to A = 0(—), A = 1(——),
A=2(---)and X = 5(- — -). Figure (a) to (d) are plotted for o = 0.1, ¢ = 1/v/2, ¢ = 1 and ¢ = 5, respectively.

When [ = 1, it becomes the pdf of the CSN distribution. Note that when [ = 2, the pdf (2.3) is the
same as the pdf (2.2), the SCSN pdf.

More generally, we introduce the parameter y as the location parameter for the LASN distribution
and write the pdf as

! sec?(1(6" — tan(l(6" — p)/2) tan(l(0* — u)/2) T e T
P (10 #)/2)45( ; )«I><,\ 5 > T <0 <7, (29

where ~n/l < < m/l. Then, we say that * is an LASN random variable with parameters p,
and A; for brevity, we shall also say that 6* is LASN(y, ¢*, ). When the shape parameter A = 0,
the pdf becomes that of the l-axial normal distribution(LAN) distribution; similarly, we shall say
that 6* is LAN(u, ¢%).
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Figure 2.2. SCSN densities for different values of A and . For each plot the line types correspond to A = 0{—), A = 1{~—),
X =2(---) and X = 5(- — -). Figure (a) to (d) are plotted for ¢ = 0.1, ¢ = 1/v/2, v = 1 and ¢ = 5, respectively.

Figure 2.1 shows the CSN densities with some combinations of ¢ and A. When A = 0, the CSN
densities denote the CN densities. As ¢ increases the CSN densities have two modes and large
spread. The parameter A determines the shape of the CSN densities. The parameter u is the location
parameter evidently. Figure 2.2 shows the SCSN densities with the same parameter combinations
of Figure 2.1. When X = 0, the SCSN densities becomes SCN densities. All parameters have the
same role as the CSN densities. For the comparison purpose, Figure 2.3(a) shows the wrapped
skew-normal densities (Pewsey, 2000a) for the same parameter combinations of Figure 2.1(b). The
density of the wrapped skew-normal distribution is as follows:

cQ

-f; Z ¢<%@>¢{A<9_4—;ﬂ>}, 0<0<2m, >0, —o0<A<o0.

P —
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Figure 2.3, (a) Wrapped skew-normal densities for different values of A and ¢ = 1/+/2. The line types correspond to A = 0(—),
A=1(~=),A=2(---)and A = 5(-—-). (b) Wrapped exponential densities for different values of X. The line types correspond
oA =0.1(—), A=1/v2(—=), A= 1(---) and A = 5(- — -). (c) Wrapped Laplace densities for different values of x and
A = 1/VZ. The line types correspond to k = 1(—~), k = 2(-++)and k = 5(- — ).

We used r = 7 for Figure 2.3(a). Figure 2.3(b) shows the wrapped exponential densities with the
following pdf (Jammalamadaka and Kozubowski, 2004):

/\e—/\e

1_—6_m, 0<0<2r, —c0< A< o00.

The parameter A is the scale parameter so we changed it similar to ¢ of Figure 2.1. Figure 2.3
(c) shows the wrapped Laplace densities with the following pdf (Jammalamadaka and Kozubowski,
2004):

A
AK < g Ao ex?

1+ r2 ), 0<0<2m, k>0, —00< A< o0

T_e 2o T~
For k = 1, we obtain the symmetric wrapped Laplace distribution, so we change the values of
« similar to ¢ of Figure 2.1. All densities of Figure 2.3 are plotted over the support [~m, ) for
the comparison purpose. The wrapped Laplace densities are shifted for the comparison purpose.
From the figures, it is obvious that the wrapped skew-normal densities are similar to the CSN
densities for the small values of ¢. However CSN densities have more heavy tails than those of the
wrapped skew-normal densities on the circle. This difference mainly comes from the absolute value
of Jacobian of the CSN distribution. Furthermore CSN densities have two modes as ¢ increases.
Hence the CSN distribution can be used as a model for skewed bimodal data.

It is straightforward to generate samples from an LASN distribution. First, generate samples from
a skew-normal distribution (Azzalini and Capitanio, 1999), and then use the inverse transformation,
6* = p+2/ltan”"(z/r), r = 0/p. Similarly, the cdf of an LASN distribution is F(6%; u, ©%,A) =
® (1/ptan(i{0* — u)/2)) — 2T (1/wtan(l(6* — u)/2), \), where the function T(h, a) is that studied
by Owen (1956). The following properties of the density (2.4) with 4 = 0 and o = ¢ = 1 follow
from the definition of an LASN distribution, Azzalini (2005) and the properties of T'(h,a} (Owen,
1956).

{(a) If X =0, we obtain the LAN(0, 1) density. It’s density function is as follows:

%sec2 10°/2) ¢ (tan(te/2), -7 <0 <T.
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(b) If 6 ~ LASN(0,1, ), then —6* ~ LASN(0, 1, —\) by taking simple transformation, y = —6*.

(c) As A — oo, the LASN(0,1, A) density converges pointwise to the half-LAN(0,1) density, i.e.,
I'sec?(16* /2)$(tan(16* /2)), 0 < 8* < =/l

(d) If 6 ~ LASN(0,1, ), then tan*(18*/2) ~ x3.

(e) F(0";0,1,—X) =1— F(—6*;0,1, ) by the properties of ®(-) and T'(k, a).
(f) F(6%;0,1,1) = ®*(tan(l8*/2)) by the property of T'(h, a).

(g) s;ip|<1>(tan(l0*/2)) — F(6%,0,1,))| = 1/mtan"*(|)|).

(h) If U ~ N(0,1) is independent of §* ~ LASN(0,1, A), then

aU + btan(16* /2) SN b
Va? + b2 Va2 (1l + X)) + b2

for any a,b € R.

2.2. Trigonometric moments

Similar to those of any circular density, trigonometric moments of the LASN distribution are defined
as follows: ¢, = Ee?®" = a, + i8p = Ecos(pf*) + iEsin(pf*), p = 0,+1,+2,.... We assumed that
the location parameter = 0 without loss of generality. Even moments of the SN(A) distribution
are independent of the shape parameter A, i.e., EX?* = 1-3.--(2n — 1) (Azzalini, 1985). We
extend this result to the following Lemma 2.1.

Lemma 2.1. IfX ~ SN(X) and g is an even function, then Eg(X) is independent of . Furthermore
Eg(X) is equal to Eg(Z), where Z ~ N(0,1).

Proof.
Eox) = [~ a26(@)0(a)ds
= [ s@ro)1 - e(-x0)is
=289(2) - [ g@)20(x)2(-ra)ds,
where Z ~ N(0,1). Let y = —z at the last integral and use the assumption that g is an even
function, then we have Eg(X) = 2Eg(Z) — Eg(X). So Eg(X) = Eg(Z) which is independent of .

a

Theorem 2.1.  If 8* ~ LASN(0, ¢%, \), then o, = E cos(ph*) do not depend on the shape parameter
A.

Proof. After a transformation, ¢ = 1/¢tan(16*/2), a random variable = follows a skew-normal
distribution with a parameter A. Furthermore cos(2ptan™(p z)/I) is an even function of a skew-
normal random variable z. Hence the result follows immediately by the Lemma 2.1. O
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From now on we concentrate on the trigonometric moments of the SCSN and CSN distributions.
Since most of real data are semicircular or circular data. In general, the k** cosine moment, ax =
E cos(k0*), of the CSN distribution is the same as the 2k cosine moment, cox = E cos(2k8), of the
SCSN distribution. Furthermore the k** sine moment, 8y = Esin(k68*), of the CSN distribution is
the same as the 2k*" sine moment, B, = E sin(2k6), of the SCSN distribution. Based on this fact,
we concentrate on the trigonometric moments of the SCSN distribution afterwards. The following
Lemma 2.2 is needed to derive the trigonometric moments of the SCSN distribution.

Lemma 2.2. Using z = tan(8), the multiple-angle formulas are given in terms of x by

<z> Cll’—kzp_k(l + mz)_g )
k

sin(pf) = (Z) gz F(1 4+ 22" %,

k=0

cos(pf) =

M-e

0

sl

where sin(0) = /1 + 22, cos(8) = 1/v1 + =2,

if p—k=4m,
fp—k=2m+1,
ifp—k=4m+2,

cos [(p - k)g] =cp =
and

if p—k=2m,

1,
0,
-1,
1, fp—k=4m+1,
= 0,
-1, ifp—k=4m+3,
where m =0,1,2,....

Proof. The proof is straightforward using the multiple-angle formulas and a transformation =z =
tan(6). O

Theorem 2.2. Let @ ~ SCSN(0, %)), then the cosine moments are as follows:

1 p\ 1 p—k+1 p—k+1 3-k 1
Qp = ,_271-(,0 Z (k>cp_kf< 5 v 2 ’ 2 ’2892 ’

kER.
a_p =ap, pEN Furthermore ag =1, (2.5)
where ¥(a,7; z) has an integral representation as 1/T(e) [° e *"t*7 (1 + )77 dt (the integral

formula 9.211.4 of Gradshteyn and Ryzhik, 2007). ¥{a,~; z) is related to a confluent hypergeometric
function ¥(a,~; z) (the formula 9.210.2 of Gradshteyn and Ryzhik, 2007) as follows:

¥(a,y;2) = 71_,(2(1; 1)1) ®(a,v;2) + —F(I:y(;)l) 277 (a—v+1,2-7;2).

A confluent hypergeometric function has a second notation 1F;(a;; z). R. denote the set of values
such that {k|k =0,1,...,p satisfying {p—k =2m, m=0,1,2,.. .}}.
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Proof. By the Theorem 2.1, the cosine moments do not depend on the shape parameter and are
the same as those of the SCN cosine moments. We first use the transformation z = tan(f). So
cos(pf) can be expressed as a function of z using Lemma 2.2. The integrand is an even function of
z when p — k is even so we use this property. Note that when p — k is odd, the integral is O since
the integrand is an odd function of x. We change the order of the summation and integration. And
apply a transformation, y = £°, then an intermediate expression is

1 3 P\ 2 R =L -z y
= ——2 _}d
Qp m(p (k) CP—k/O y 2 (1 + y) * exp ( 2(,02 Y

kER.

where R. denote the set of values such that {kjk = 0,1,...,p satisfying {p - k = 2m,m =
0,1,2,...}}. The result follows immediately by the integral formula 9.211.4 (Gradshteyn and
Ryzhik, 2007). By the property of cosine function, the remaining results are obvious. (]

For example, the first and second cosine moment can be derived in more simpler forms using
slightly different approach. The first and second a,,p = 1,2 are given by Guardiola (2004), who
only obtained these two moments:

N S (_L)K (L)
/——271_{’0 p 4502 0 4902 y

e 2n() - (2)

where Kj is the modified Bessel function of the second kind (Section 9.6 of Abramowitz and Stegun,
1972). Guardiola (2004) used Mathematica to derive two trigonometric moments. The analytical
proof is the process of using some transformations. First, use the transformation z = tan(#) and
then use y = 2sinh™*(z). The result a1 follows by the integral formula 9.6.24 of Abramowitz and
Stegun (1972). To obtain a2, we use the transformation z = tan(8) followed by y = z° and the
result is immediate by the integral formula 7.4.9 of Abramowitz and Stegun (1972). Equality of
(2.5) and (2.6} can be proved by direct application of Lemma 2.2.

aq

Unlike any other symmetric circular density, 8, = E sin(p#) are not zero and depend on the shape
parameter A. Obviously, if the shape parameter A = 0, then all 8, = E sin(p8) are 0 as the density is
symmetric about 0. To evaluate integrals, we first denote the cdf of the standard normal distribution
as an infinite sum (Section 26.2 of Abramowitz and Stegun, 1972) as follows:

o) = = + — i CUPa™T s @.7)
T2 Vor Znlr(2n+1) 7T ‘

Theorem 2.3. Let @ ~ SCSN(0,¢?, ), then the sine moments are as follows:

-k -k k1
;31;: Z (z) cf,_kcnI‘(n+1+pT)\Il<n+1+p—2—,n+2—§,§;—2->

kneER,
B-p = —Bp, p€R. Furthermore fy =0,
where ¢, = {{—1)" X1}/ {mn12"(2n + )" 12} is o constant depending on n and T'(") is o stan-

dard gamma function. R, denote the set of values such that {k,nlk =0,1,...,p,n =0,1,..., 00
satisfying {(2n+p—k+1=2m, m=0,1,2,...}}.
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Proof. We use the transformation z = tan(f). So sin(pf) and the cdf of the standard normal
distribution can be expressed as functions of = using Lemnma 2.2 and (2.7), respectively. Furthermore
the first integrand is an even function of x when p — k is even so we use this property and in this
case cf,_k is 0. Note that p — k is odd the integral is 0. Hence the first integral multiplied by cf,_k
is 0 whether p — k is odd or even. The second integrand is odd function of z when 2n4+p—-k+1
is odd so the integral is 0. And the second integrand is even function of x when 2n +p—k+1
is even so we use this property. We change the order of the summation and integration. And
apply a transformation, y = %, then the result follows immediately by the integral formula 9.211.4
(Gradshteyn and Ryzhik, 2007). By the property of sine function, the remaining results are obvious.

For example we may also derive the first two sine moments in more simpler forms using direct
integration. To derive 3i, first take z = tan(f) and then use (2.7) followed by y = z*. Using the
integral formula 9.211.4 and the formula 9.210.2 (Gradshteyn and Ryzhik, 2007), the result follows.

o0

1 1
_ n+l 2n+2 . .
51 = E Cn{z @ F(1+n)1F1 <§,—n,§p5>

n=0

1 3 3 1
2 r(—1— 2 o . L
+ﬁ (-1 n)F<2+n) 1F1<2+n,2+n,2<p2>},

where 1 F; is the Kummer confluent hypergeometric function (Section 13.2 of Abramowitz and
Stegun, 1972).

1) & 3 1 1
=209 (ggz) Yoot (5 47) P (-5 -5z,

where I'(+, ) is the standard incomplete gamma function. To show (3., first take z = tan(8) and
then use (2.7) followed by y = 2?. Using the integral formula 3.383.10 (Gradshteyn and Ryzhik,
2007), the result follows. Similar to the equality of (2.5) and (2.6), these sine moments are equal
by direct application of Lemma 2.2.

Note that 8p,%2 = 1,2 depend on the shape parameter A and the scale parameter . Hence, if the
shape parameter A equals O, then 8,,7 = 1,2 equals 0 as in any other circular sine moment.

2.3. Asymptotics

We consider the behavior of the LASN distribution when ¢ — 0. Suppose the distribution of 6*
follows LASN(u, %, A). Let @ = 1(8* — 11)/(2¢), and then use the change of variable technique. For
sufficiently small ¢, we have tan(ay) ~ ay, and sec{ap) ~ 1 by the first order approximation of
the Taylor series expansion. Hence, the distribution of 8* becomes SN{u, 4% /1%, X).

Another useful asymptotic distribution is the sample dispersion about the population location
parameter y, ie, n—V = n - 3" cos(@; — p). If 67,...,0; are a random sample from
LASN(u,4¢%/1?,)), and then 8} — i ~ SN(0, 49 /12, \) for sufficiently small ¢. Since cos(#; — ) =~
1— (67 — p)?/2 for small 8 — i by the small angle theory, {{(67 — 1)/(2¢)}> = I*(1 — cos(8} — 1))/
(2¢®) ~ x? from the property H of the skew-normal distribution (Azzalini, 1985). Hence, the
distribution of n — V follows 2¢%/I%x2 by the additive property of x> distribution.
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3. Parameter Estimation and Examples

In this section, we will assume that r = 1 without loss of generality, so ¢ = 0.

3.1. Maximum likelihood estimation

The LASN distribution is a simple transformed one, so we first consider the parameter estimation
of the SN distribution. Parameter estimation of a skew-normal distribution is cumbersome, as
the direct parameterization of density (2.1) is parameter redundant for the important case of the
normal distribution. This case correspends to A = 0. The implications of parameter redundancy
are discussed in Azzalini (1985), Azzalini and Capitanio (1999) and Pewsey (2000a, 2000b). To
resolve this problem, Azzalini (1985) introduced the centered parameterization of the density (2.1).
Under this different parameterization,

Z - E(Z)

Yo=v+
=Y T( var(Z)

), —o<v<oo, T>0

is a skew-normal random variable with mean v, standard deviation 7, and coefficient of skew-
ness v1, where —0.99527 < v < 0.99527 and Z ~ SN(0,1,)). We will denote this relation by
Yo ~ SNc(r, 72, v1); here and subsequently, the subscript “C” indicates a reference to the centered
parameterization. Note that Yp = X = ¢Z ~ SNp(0,0?,1). The subscript “D” indicates a refer-
ence to the direct parameterization. The direct parameters are related to the centered parameters

3 2 <Y
137'7 g=T 1+02713§ A= 27 (31)
Vb2 + c2(b2 — 1)nf

where b = /2/7 and ¢ = (2/(4 — 7))'/3 since the location parameter of the direct parameterization
is 0. Hence, the density of Y is given by

according to

wWies

v=cy

1
3
1

2 Yy cy Yy
=9 =5 ]® , 2 5 2
7'\/1 + 2y} 7\/1 + 28 \/b2 +c2(b? — 1)y T\/l +c2yf
As mentioned above, similar problems occur for the density (2.4). To avoid such problems, it is

desirable to project Y¢ over a semicircular segment. And then we use the transformation 6* = 28/1
to cover l-axial data. So the projected density after introducing a location parameter pu is given by

Lsec? (0" — 10/2) , ( tan@(" ~ /2) ) oyp tan(0" - 10/2) ) (5
Ty 1+ 0271‘% ™1+ czfyl% \/82 + e2(b? — 1)71% 1+ Cz,yfs'

for —m/l < 6* < n/l and —nr/l < u < m/l. We denote this distribution as 5 ~ LASNc(u, 7%, 71).

The negative log-likelihood for a random sample of size n, 8* = (87,...,8;), from the LASN
distribution with centered parameters 72 and +; and the location parameter u is given by

e 2 *
) = o)+ g (s ) L0
=y, 7%, m; =-nlog| — ] + 5 log +C'h>+'
2T 2 92 (1 + 0271%)
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For the following examples, the corresponding estimates have been computed by the Nelder-Mead
simplex method (Nelder and Mead, 1965) combined with a grid of starting values. Using a grid of
initial values rather than a single starting value is advisable since multiple minima can occur on
the negative log-likelihood surface. After the negative log-likelihood function has been minimized,
it seems preferable to convert back the estimates from (3.2) to the simpler form (2.4) using the
relationship (3.1).

3.2. Examples

EXAMPLE 3.1. We simulated a data set of size 100 from an SCSN distribution with g =0, ¢ = 1.75,
and A = 1. For this data set, the corresponding maximum likelihood estimates are given by
fi=—0.01, $ = 1.75 and A = 0.99. Histogram with pdfs and Healy’s plot (Healy, 1968) are shown
in Figure 3.1. A visual inspection of Figure 3.1 indicates a satisfactory fit of the density to the
data. Healy’s plot is based on

tan (67 — )/2)

&= =

i=1,...,n) (3.3)
and is sampled from a 3 —distribution if the fitted model is appropriate, using property (d). In
practice, estimates must replace the exact parameter values in Equation (3.3). d; above must be
sorted and plotted against the x? percentage points. Equivalently, the cumulative x— probabilities
can be plotted against their nominal values 1/n,2/n,...,1; the points should lie on the bisection
line of the quadrant.

EXAMPLE 3.2. We simulated a data set of size 100 from an CSN distribution with g =0, ¢ = 5 and
A = 1. For this data set, the corresponding maximum likelihood estimates are given by i = —0.009,
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Figure 3.2. Histogram with pdfs (the solid line represents the original pdf and the dashed line corresponds to the fitted pdf) and
Healy's plot

@ = 5.12 and A =102 Histogram with pdfs and Healy’s plot (Healy, 1968) are shown in Figure
3.2. A visual inspection of Figure 3.2 indicates a satisfactory fit of the density to the data.

4. An Extension and Discussion

We have an extension of the suggested model (2.4). The bivariate version of the LASN distribution
is developed which is applicable to any arc of arbitrary length say 2x/l for | = 1,2,... in a bivariate
context.

We can construct a bivariate LASN distribution in a manner similar to the construction of a
univariate LASN distribution. We shall use the same semicircular transformation applied in a
bivariate context. The density function of the LASN distribution is defined as

P 2(0% 12) sec2 (16" tan(167/2)\ tan(167/2) | . tan(163/2)
3 (l01/2) (l92/2)¢‘2 ((tan(l%/Z)) ,Qr) o ()\1 \/@.1_1_ 4+ Ao \/@ > s

where —m/l < 07 < w/l,i =1,2, Q, = (i;) = (03;/7%) and Q = (0y;) is a 2 x 2 positive definite
matrix. To construct this density, we begin with the bivariate skew-normal density

2¢2(z; P (Nw'z), =€ R,

where X € R?, and w is the diagonal matrix formed by the standard deviations of Q. Consider the
transformation z; = rtan(6;), ¢ = 1,2 and then apply 67 = 26,/l,i = 1,2 to cover l-axial data.
Consequently, the pdf of a bivariate LASN distribution is obtained using simple algebra. Similar to
univariate case, we may introduce the location parameters. Plugging in 8] —pu,, 2 = 1, 2 instead of 87,
we have a bivariate LASN distribution with location parameters, where —7n/l < p; < w/l, 1 =1,2.
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