• Title/Summary/Keyword: Skeletal muscle

Search Result 1,249, Processing Time 0.03 seconds

AN ELECTROMYOGRAPHIC STUDY OF MUSCLE ACTIVITY IN NORMAL OCCLUSION AND SKELETAL CLASS III MALOCCLUSION IN ADULT (성인에서 골격형 III급 부정교합자와 정상교합자의 근활성도에 관한 연구)

  • Kim, Taik-Soo;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.22 no.3 s.38
    • /
    • pp.627-646
    • /
    • 1992
  • The purpose of this study was to investigate the relationship among the activity of the craniofacial muscle and craniofacial form and occlusal state. In this study, subjects were consisted of 23 male adults with skeletal Class III malocclusion and 30 male adults with normal occlusion. The measurements in oral exam, lateral ceghalogram, and E.M.G. recordings of anterior temporal, masseter, and upper lip muscles at rest position, clenching in centric occlusion, chewing of gum, swallowing of juice, were analyzed with SPSS system. The results were as follows: 1. At rest position upper lip muscle activity of skeletal Class III group was significantly higher than that of normal group. 2. Both clenching and chewing masseter and temporal muscle activity of normal group were significantly higher than that of skeletal Class III group. 3. During swallowing of juice, upper lip muscle activity of skeletal Class III group were significantly higher than that of normal group. 4. The activities of masseter and anterior temporal muscle during clenching and chewing were significantly correlated with hypodivergent facial form and number of occluded teeth. 5. The activity of upper lip during swallowing had positive correlation with mandibular prognathism.

  • PDF

Purification and Properties of Bovine Skeletal Muscle Proteasome

  • Yamamoto, S.;Gerelt, B.;Nishiumi, T.;Suzuki, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2005
  • This paper describes the purification and properties of a multicatalytic proteinase complex, proteasome, from bovine skeletal muscle, in comparision with proteasome prepared from other species or organs. The purified bovine skeletal muscle proteasome exhibited a single band on polyacrylamide gel electrophoresis under nondenaturing conditions. Bovine skeletal muscle proteasome degraded synthetic peptides maximally at pH 8.0. Relative to pH 8.0, activities were gradually decreased with the lowering pH, but the extent of decrease was substrate-dependent, and the activity at pH 5.5 still retained 78-10% of the activity at pH 8.0, indicating the possibility that the proteasome is active in muscle during aging. When the proteasome was heated at 60$^{\circ}C$ for 15 or 30 min and treated in the presence of 0.0125% SDS, the activity increased over 1.8 and 3.1 times (LLVY (Suc-Leu-Leu-Val-Tyr-NH-Mec) as a substrate), respectively. These results (activation with heat or SDS) indicate that the hydrolytic activity of proteasome was stimulated under mild denaturing conditions. The characteristics of the bovine skeletal muscle proteasome obtained in our experiment were almost the same as those of the proteasome prepared from other species or organs.

Review of Sarcoplasmic Reticulum Ca$^{2+}$ Releasing Mechanisms in Skeletal Muscle Contraction (골격근 수축에 있어서 근장그물로부터의 Ca$^{2+}$ 유리 기전에 대한 고찰)

  • Koo, Hyun-Mo;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.237-243
    • /
    • 2001
  • Skeletal muscle cells are activated by ${\alpha}$-motorneurons which release acetylcholine at the neuromuscular junction. This results in a local depolarization of surface membrane which triggers an action potential. The action potential propagates along the surface membrane and also into the T-tubule system. In the triads T-tubules are in close connection with the terminal cisternae of the sarcoplasmic reticulum(SR). The action potential activaies T-tubule voltage sensors(DHP receptors). which activates SR Ca$^{2+}$ release channels(ryanodinc receptors). Ca$^{2+}$ have a key role in skeletal muscle in that an increase of free myoplasmic Ca$^{2+}$ concentration. The process of coupling chemical and electrical signals at the cell surface to the intracellular release of Ca$^{2+}$and ultimate contraction of muscle fibers is termed excitation-contraction coupling(ECC). Coupling of cel1 surface signals to intracellular Ca$^{2+}$ release proceeds by several mechanisms in skeletal muscle cells. This review focus on sarcopiasmic reticulum(SR) Ca$^{2+}$ releasing mechanisms from sarcoplasmic reticulum in the skeletal muscle. The mechanisms include DCCR, CICR, and HCR.

  • PDF

Effect of Thyroid Hormone on the Gene Expression of Myostatin in Rat Skeletal Muscle

  • Ma, Yi;Chen, Xiaoqiang;Li, Qing;An, Xiaorong;Chen, Yongfu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.275-281
    • /
    • 2009
  • Modification of thyroid hormone levels has a profound effect on skeletal muscle differentiation, predominantly through direct regulation involving thyroid hormone receptors. Nevertheless, little is known about the regulation of myostatin gene expression in skeletal muscle due to altered concentrations of thyroid hormone. Thus, the goal of our study was to find out whether altered thyroid states could change the gene expression of myostatin, the most powerful inhibitor of skeletal muscle development. A hyperthyroid state was induced in rats by daily injections of L-thyroxine 20 mg/100 g body weight for 14 days, while a hypothyroid state was induced in another group of rats by administering methimazole (0.04%) in drinking water for 14 days. After a period of 14 days of L-thyroxine treatment we observed a significant increase of myostatin expression both in mRNA and protein level. However, decreased expression of myostatin mRNA and protein were observed in hypothyroid rats. Furthermore, our studies demonstrated that the upregulation of myostatin gene expression might be responsible for the loss of body weight induced by altered thyroid hormone levels. We concluded that myostatin played a role in a metabolic process in muscle that was regulated by thyroid hormone.

Age-Related Loss of Skeletal Muscle and Associated Risk Factors in Middle-Aged Men: A Comprehensive Study

  • Jongseok Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.2
    • /
    • pp.13-21
    • /
    • 2023
  • PURPOSE: This study examined the specific clinical risk factors in middle-aged men with age-related loss of skeletal muscle mass (ALSMM). METHODS: The present research analyzed the data from a cross-sectional study of 1,564 community-dwelling participants aged between 40 to 49 years old. The participants were screened for ALSMM. The study examined various risk factors, including age, height, weight, body mass index, waist circumference, skeletal muscle mass index, smoking and drinking status, systolic and diastolic blood pressure, fasting glucose levels, and triglyceride and cholesterol levels. RESULTS: The risk factors of ALSMM were height, body mass index, waist circumference, skeletal muscle mass index, systolic blood pressure, diastolic blood pressure, drinking status, fasting glucose, and triglyceride levels (p < .05). The weight, triglyceride, and smoking status variables were non-significant (p > .05). CONCLUSION: The risk factors for ALSMM among community-dwelling adults were determined. These results are expected to contribute to the existing literature on ALSMM and provide potential risk factors associated with the development of ALSMM in middle-aged males.

Sarcopenia: Nutrition and Related Diseases

  • Du, Yang;No, Jae Kyung
    • Culinary science and hospitality research
    • /
    • v.23 no.1
    • /
    • pp.66-78
    • /
    • 2017
  • "Sarcopenia", sarcopenia is an old age syndrome, and used to describe the reduction of skeletal muscle. Initially, it was thought that sarcopenia was only a senile disease characterized by degeneration of muscle tissue. However, its cause is widely regarded as multifactorial, with neurological decline, hormonal changes, inflammatory pathway activation, declines in activity, chronic illness, fatty infiltration, and poor nutrition, all shown to be contributing factors. Skeletal muscle mass can be measured by a variety of methods, currently, the commonly used methods are dual-energy X-ray scanning (DXA), computer tomography (CT), magnetic resonance imaging (MRI), etc. Muscular skeletal disorders can also be assessed by measuring appendicular skeletal muscle (ASM), particularly muscle tissue content. At the same time, sarcopenia refers to skeletal muscle cell denervation, mitochondrial dysfunction, inflammation, hormone synthesis and secretion changes and a series of consequences caused by the above process and is a progressive loss of skeletal muscle syndrome, which can lead to the decrease of muscle strength, physical and functional disorders, and increase the risk of death. Sarcopenia is mainly associated with the aging process, but also related to other causes such as severe malnutrition, neurodegenerative diseases, and disuse and endocrine diseases associated with muscular dystrophy, and it is the comprehensive results of multi-factors, so it is difficult to define that sarcopenia is caused by a specific disease. With the aging problem of the population, the incidence of this disease is increasingly common, and seriously affects the quality of the life of the elderly. This paper reviews the etiology and pathogenesis of myopathy, screening methods and diagnosis, the influence of eating habits, etc, and hopes to provide reference for the diagnosis and treatment of this disease. At present, adequate nutrition and targeted exercise remain the gold standard for the therapy of sarcopenia.

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.

Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity (간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향)

  • Lee, Ki Su;Hong, Kwon Eui
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice

  • Jin, Heegu;Oh, Hyun-Ji;Nah, Seung-Yeol;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.454-463
    • /
    • 2022
  • Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.