• Title/Summary/Keyword: Skeletal

Search Result 3,092, Processing Time 0.037 seconds

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

Inhibitory Effect on RANKL-Induced Osteoclast Differentiation by Water Extract of Zizyphus Jujuba Mill (대추 물 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Yoon, Kang Hugh;Baek, Jong Min;Kim, Ju Young;Kwak, Seong Cheoul;Cheon, Yoon Hee;Jeon, Byung Hoon;Lee, Chang Hoon;Choi, Min Kyu;Oh, Jaemin;Lee, Myeung Su;Kim, Jeong Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Bone homeostasis is maintained by balance between bone resorbing-osteoclasts and bone forming-osteoblasts. Excessive osteoclastic bone resorption plays a critical role in bone destruction in pathological bone diseases such as osteoporosis, rheumatoid arthritis, and periodontal disease. Many compounds derived from natural products have pharmacological applications and have therapeutic value for treating or preventing several bone diseases characterized by excessive bone resorption. To discover new compounds that can act as anti-resorptive agents, we screened for natural compounds that regulate osteclast differentiation, and found that water extract of Ziziphus Jujuba Mill (WEZJ) has inhibitory effects on osteoclast differentiation. In this study, WEZJ clearly inhibits the osteoclast differentiation in the presence of receptor activator of nuclear factor kB (RANKL), macrophage colony-stimulating factor (M-CSF) without cytoxicity by blocking activation of nuclear factor of activated T cells (NFAT)c1, and c-Fos. In signaling pathway, the phosphorylation of Akt, p38, c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (ERK) and the expression of osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphates (TRAP), Integrin av, Integrin b3, Cathepsin K are suppressed, too. These result suggest that WEZJ may have therapeutic value for treating or preventing several bone diseases characterized by excessive bone destruction.

Physiochemical Characteristics of Calcium Supplement Manufactured using Starfish (불가사리를 이용하여 제조한 칼슘보충제의 이화학적 특성)

  • Park, Hee-Yeon;Lee, Jung Im;Nam, Ki-Ho;Jang, Mi-Soon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.727-734
    • /
    • 2012
  • For developing calcium supplement from the harmful marine organism starfish, the physiochemical property of the powdered starfish skeletal plate and the hydrolysis condition of the starfish digestive enzyme were studied. The optimal hydrolysis condition of the starfish digestive enzymes was at $55^{\circ}C$ for 12 h. The bulk densities of the powdered starfish skeletal plates of Asterias amurensis and Asterina pectinifera were $1.1{\pm}0.0$ and $1.2{\pm}0.0g/cm^3$, respectively. As for the median size, the values were 10.738 and $11.799{\mu}m$, respectively. According to the added concentration of sodium polyacrylate, the dispersibility rate of the powdered starfish skeletal plate was shown to be 6h at 0.0%, 3 days at 0.1%, 20 days at 0.2%, and until 30 days at 0.4%. The elementary composition of the powdered starfish skeletal plates from A. amurensis and A. pectinifera mainly consisted of calcium, and it formed 98.95 and 98.52% of the powdered starfish skeletal plates, respectively. The results of the X-ray diffraction (XRD) analysis showed that they were present in the form of $CaCO_3$. Based on these results, it is suggested that starfish skeletal plate can be utilized as a functional material for a calcium supplement.

Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향)

  • Kim, Hye Jin;Hwang, Ji Sun;Kwak, Yi-Sub;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1651-1657
    • /
    • 2012
  • Plectin and microtubule actin cross-linking factor 1 (MACF1) are architectural proteins that contribute to the function of skeletal muscle as generators of mechanical force. However, the influence of insulin- like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on plectin and MACF1 in skeletal muscle cells has not been demonstrated. The effect of IGF-I on plectin and MACF1 gene expression was investigated by treating differentiated C2C12 murine skeletal muscle cells with 20 ng/ml of IGF-I at different time points. The IGF-I treatment increased plectin protein expression in a dose-dependent manner. The mRNA level of plectin was measured by real-time quantitative PCR to determine if plectin induction was regulated pretranslationally. IGF-I treatment resulted in a very rapid induction of plectin mRNA transcript in C2C12 myotubes. Plectin mRNA increased by 140 and 180% after 24 and 48 hours of IGF-I treatment, respectively, and returned to the control level after 72 hours of IGF-I treatment. MACF1 mRNA increased 86 and 90% after 24 and 48 hours of IGF-I treat-ment, respectively, and returned to the control level after 72 hours of IGF-I treatment. These results suggested that the plectin gene is regulated pretranslationally by IGF-I in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the plectin and MACF1 genes in C2C12 skeletal muscle cells and has modulating effects on a cytolinker protein as well as on contractile proteins.

Correlation between Dental and Skeletal Maturity in Korean Children (한국 어린이의 골 성숙도와 치아 석회화 단계 간의 상관관계)

  • Kim, Seong Jin;Song, Je Seon;Kim, Ik-Hwan;Kim, Seong-Oh;Choi, Hyung-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • The aim of this study was to investigate the relationships between the stages of calcification of various teeth and skeletal maturity stages among Korean subjects. The samples were derived from hand-wrist, panoramic radiographs, and lateral cephalograms of 743 subjects (359 males and 384 females) with ages ranging from 6 to 14 years. Calcification of seven permanent mandibular teeth on the left side were rated according to the system of Demirjian. To evaluate the stage of skeletal maturation, hand-wrist radiographs were analyzed by skeletal maturity indicators (SMI) system of Fishman and lateral cephalograms by cervical vertebral maturation (CVM) method of Baccetti. Statistically significant relationships were found between dental calcification and skeletal maturity stages according to Spearman rank-order correlation coefficients (r = 0.40-0.84, p < 0.001). The second molar showed the highest correlation and central incisor showed the lowest correlation for female and male subjects. For both sexes, canine stage G and second molar stage F were related to SMI 6 and CS 3. Because of the high correlation coefficients, this study suggests that tooth calcification stages from panoramic radiographs might be clinically useful as a maturity indicator of the pubertal growth period in Korean patients.

Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats

  • Seo, Dae Yun;Bae, Jun Hyun;Zhang, Didi;Song, Wook;Kwak, Hyo-Bum;Heo, Jun-Won;Jung, Su-Jeen;Yun, Hyeong Rok;Kim, Tae Nyun;Lee, Sang Ho;Kim, Amy Hyein;Jeong, Dae Hoon;Kim, Hyoung Kyu;Han, Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.575-580
    • /
    • 2021
  • Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.

Peroxisome Proliferator-activated Receptor-γ Gene Polymorphisms are not associated with Osteonecrosis of the Femoral Head in the Korean Population

  • Kim, Tae-Ho;Hong, Jung Min;Park, Eui Kyun;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.388-393
    • /
    • 2007
  • Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-${\gamma}$ ($PPAR{\gamma}$) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between $PPAR{\gamma}$ gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the $PPAR{\gamma}$ gene are unlikely to be associated with susceptibility to ONFH.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production

  • Johnson, Bradley J.;Smith, Stephen B.;Chung, Ki Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.757-766
    • /
    • 2014
  • Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed ${\beta}$-adrenergic agonists (${\beta}$-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding ${\beta}$-AA to beef cattle increases longissimus muscle cross-sectional area 6% to 40% compared to non-treated cattle. The ${\beta}$-AA have been reported to improve live animal performance, including average daily gain, feed efficiency, hot carcass weight, and dressing percentage. Treatment with ${\beta}$-AA increased mRNA concentration of the ${\beta}_2$ or ${\beta}_1$-adrenergic receptor and myosin heavy chain IIX in bovine skeletal muscle tissue. This review will examine the effects of skeletal muscle and adipose development with ${\beta}$-AA, and will interpret how the use of ${\beta}$-AA affects performance, body composition, and growth in beef cattle.

A Clinical Study on the case of Diffuse Idiopathic Skeletal Hyperostosis(DISH) Treated with Traditional Korean Medicine, Especially Korean Bee-Venom Therapy (봉약침요법을 시행한 미만성 특발성 골격 과골증(Diffuse Idiopathic Skeletal Hyperostosis:DISH) 1례)

  • Moon, Ik-ryoul;Cboi, Sung-gwun;Lim, Hyi-jeong;Seo, Won-hee
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.225-233
    • /
    • 2002
  • Objective : There are little report on treatment of Diffuse Idiopathic Skeletal Hyperostosis(DISH) in Traditional Korean Medicine. We suggest to treat DISH with a Korean Bee-Vonom Therapy and would like to suggest treatment plan for the further treatments. Methods : Under the assumption that Korean Bee-Venom Therapy may be affective for treatment DISH, the following points were administreted :Hua-Tuo-Jia-Ji-Xue Results : After 14 weeks of treatment-especailly Korean Bee-Venom Therapy, a remarkable improvement was made for DISH. Conclusion : Significant improvement in DISH was obtained with through Korean Bee-venom Therapy, Four needle technique, Common Acupucture Treatment and Herbal medication. Although this case yielded favorable result, more study should be made to prove the effectiveness of Korean Bee-Venom Therapy for treating DISH.

  • PDF