• Title/Summary/Keyword: Size structure

Search Result 7,574, Processing Time 0.032 seconds

Investigation on Relationship Between Pore Structure of Coating Layer and Ink Residual Behavior - Focused on the Effect of Pigments and Inks - (도공층의 공극성이 인쇄후 잉크의 잔류 거동에 미치는 영향 - 안료와 잉크의 효과 -)

  • 김병수;정현채;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.53-58
    • /
    • 2002
  • This paper was performed to investigate the effect of pore structure on ink residual behavior. To prepare different coating structures as substrates against inks, fine, medium and coarse calcium carbonate were used in the coating color. It is well known ink properties can affect to print qualities. After printing on the coated paper, ink layer can consider as third structure addition to paper and coating layer. To compare effect of ink properties on the surface structure and print qualities, several properties of ink were also adopted as raw material. Particle size of pigment effect on gloss evaluation of coated paper increased with calendering. It was shown that ink transfer rate increased as surface of the sample was smooth. The ink contained low viscosity resin evaluated more print gloss. Finer pigment particle size, smaller pore size and higher porosity. Pore volume of coated paper was slightly decreased with printing as the coating was prepared with the finest particle size. However, it founded that ink resin could not affect on pore volume and distribution of printed paper

Design Automatization of Space Truss Structure Using Optimizations Technique (최적화 기법을 이용한 3차원 트러스 구조물의 설계자동화)

  • 최은규;임기식;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.81-90
    • /
    • 1993
  • The optimum design of a structure requires the determination of the economical member size and shape of the structure which satisfies the design condition and function. In this study, the process of design automatization of three-dimensional truss structure introduces the optimization technique tests its application in the design automatization, proposes its application method and applies the example structure of the parabolic antenna truss. Using the Formex Algebra of configuration function, the structure's mesh-generation is automatized. By using the program developed in this study, the input member array, member size and load condition designer can generate the input data file for the structure analysis and optimum design. This study is aimed at the development of a design automatization system that search for tile optimum value of a structure design by observing the structure's sensitivity from the modification of member array and member property.

  • PDF

Calculating Data and Artificial Neural Network Capability (데이터와 인공신경망 능력 계산)

  • Yi, Dokkyun;Park, Jieun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Recently, various uses of artificial intelligence have been made possible through the deep artificial neural network structure of machine learning, demonstrating human-like capabilities. Unfortunately, the deep structure of the artificial neural network has not yet been accurately interpreted. This part is acting as anxiety and rejection of artificial intelligence. Among these problems, we solve the capability part of artificial neural networks. Calculate the size of the artificial neural network structure and calculate the size of data that the artificial neural network can process. The calculation method uses the group method used in mathematics to calculate the size of data and artificial neural networks using an order that can know the structure and size of the group. Through this, it is possible to know the capabilities of artificial neural networks, and to relieve anxiety about artificial intelligence. The size of the data and the deep artificial neural network are calculated and verified through numerical experiments.

Low-Complexity Multi-size Cyclic-Shifter for QC-LDPC Codes

  • Kang, Hyeong-Ju;Yang, Byung-Do
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.319-325
    • /
    • 2017
  • The decoding process of a quasi-cyclic low-density parity check code requires a unique type of rotator. These rotators, called multi-size cyclic-shifters (MSCSs), rotate input data with various sizes, where the size is the amount of data to be rotated. This paper proposes a low-complexity MSCS structure for the case when the sizes have a nontrivial common divisor. By combining the strong points of two previous structures, the proposed structure achieves the smallest area. The experimental results show that the area reduction was more than 14.7% when the proposed structure was applied to IEEE 802.16e as an example.

A Study On the Structure and Mechanical Properties of tensioned and non-tensioned annealed PP filaments (긴장 및 무긴장 상태에서 열처리한 PP 필라멘트의 구조 및 역학적 성질에 관한 연구)

  • Lee, Eun-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.413-418
    • /
    • 2001
  • The change of crystalline structure and mechanical properties of drawn PP filaments which was treated by tensioned and non-tensioned annealing was investigated. Measurements were carried out with XRD for crystallite size, density gradient tube for crystallinity. and UTM for mechanical properties. Tensioend and non-tensioned annealing were carried out $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$: for 10min., 30min., 60min, in oil bath. It was found that the crystallinity and crystallite size of (110) plane of samples were increased with increasing of annealed temperature and time. Also crystallinity and crystallite size of samples which was tensioned annealing were larger than those of non-tensioned annealed samples. Initial modulus and tensile strength of tensioned annealed samples were higher than non-tensioned annealed samples, But elongation of tensioned annealed samples was lower than non-tensioned annealed samples.

  • PDF

Bordered Pit Structure Observed by FE-SEM in Main Wood Species of Pinaceae Grown in Korea

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • An experiment was conducted to investigate the pit structure of four kind of pine wood species grown in Korea. Torus diameter, margo width, margo lattice size, diameter of pit aperture and pit border width were taken under consideration for explaining the pit structure difference among Pinus densiflora, Pinus rigida, Pinus koraiensis and Larix kaempferi. Torus diameter was found highest in Pinus rigida and the lowest in Pinus densiflora. Margo lattice size varied with torus diameter. Wider torus lowered the margo lattice size. Highest margo width was found in Pinus rigida while the lowest one was found in Pinus koraiensis. Pit aperture diameter was found highest in Pinus densiflora and lowest in Pinus koraiensis. In Pinus rigida, pit border was found the highest and the lowest was found in Larix kaempferi. Pit aperture diameter and pit border were increased gradually from pith to bark while there was a decreasing trend in the margo lattice size measuring from the pith to bark.

  • PDF

Fabrication of micro structure mold using SLS Rapid Prototyping (SLS형 쾌속조형기를 이용한 미세구조 몰드 제작)

  • 유홍진;김동학;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2004
  • By this time, a mold with nano size pattern was produced using a fabrication of X-ray lithography method and in a m icro size's case it was produced using fabrication of Deep UV lithography. In this paper, we produced mold with 400 $\mu{m}$depth pattern using a new technology of SLS(Selective Laser Sintering) Rapid Prototyping method. In addition to enhance strength and thermal stability, we produced Ni structure with a thickness of 300 $\mu{m}$ on a surface of mold using electro forming method.

  • PDF

Improvement of Surface-enhanced Raman Spectroscopy Response Characteristics of Nanoporous Ag Metal Thin Film with Surface Texture Structures (표면 요철구조를 적용한 나노 다공성 Ag 금속박막의 SERS 응답 특성 개선)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.255-260
    • /
    • 2020
  • In this study, we developed a method of improving the surface-enhanced Raman spectroscopy (SERS) response characteristics by depositing a nanoporous Ag metal thin film through cluster source sputtering after forming a pyramidal texture structure on the Si substrate surface. A reactive ion etching (RIE) system with a metal mesh inside the system was used to form a pyramidal texture structure on the Si surface without following a complicated photolithography process, unlike in case of the conventional RIE system. The size of the texture structure increased with the RIE process time. However, after a process time of 60 min, the size of the structure did not increase but tended to saturate. When the RF power increased from 200 to 250 W, the size of the pyramidal texture structure increased from 0.45 to 0.8 ㎛. The SERS response characteristics were measured by depositing approximately 1.5 ㎛ of nanoporous Ag metal thin film through cluster sputtering on the formed texture structure by varying the RIE process conditions. The Raman signal strength of the nanoporous Ag metal thin film deposited on the Si substrate with the texture structure was higher than that deposited on the general silicon substrate by up to 19%. The Raman response characteristics were influenced by the pyramid size and the number of pyramids per unit area but appeared to be influenced more by the number of pyramids per unit area. Therefore, further studies are required in this regard.

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding (구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조)

  • Jeong, Hyeondeok;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Fabrication of Metal Nanohoneycomb Structures and Their Tribological Behavior

  • Kim, Sung-Han;Lee, Sang-Min;Choi, Duk-Hyun;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.101-110
    • /
    • 2008
  • Metal nanohoneycomb structures were fabricated by E-beam evaporation and a two-step anodization process in phosphoric acid. Their tribological properties of adhesion and friction were investigated by AFM in relation to the pore size of the nanohoneycomb structures. Variations of the adhesive force are not found with pore size, but formation of the pore greatly reduces the adhesive force compared to the absence of pore structure. The coefficient of friction increased nonlinearly with pore size, due to surface undulation around the pore. Tribological properties do not differ greatly between the original nanohoneycomb structure and the metal nanohoneycomb structure.