• Title/Summary/Keyword: Size scaling

Search Result 275, Processing Time 0.024 seconds

C-Sphere Strength-Size Scaling in a Bearing-Grade Silicon Nitride

  • Wereszczak, Andrew A.;Kirkland, Timothy P.;Jadaan, Osama M.;Strong, Kevin T.;Champoux, Gregory J.
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.507-511
    • /
    • 2008
  • A "C-sphere" specimen geometry was used to determine the failure strength distributions of a commercially-available bearing-grade silicon nitride ($Si_3N_4$) with ball diameters of 12.7 and 25.4 mm. Strengths for both diameters were determined using the combination of failure load, C-sphere geometry, and finite element analysis and fitted using two-parameter Weibull distributions. Effective areas of both diameters were estimated as a function of Weibull modulus and used to explore whether the strength distributions predictably scaled between each size. They did not. That statistical observation suggested that the same flaw type did not limit the strength of both ball diameters indicating a lack of material homogeneity between the two sizes. Optical fractography confirmed that. It showed there were two distinct strength-limiting flaw types common to both ball diameters, that one flaw type was always associated with lower strength specimens, and that a significantly higher fraction of the 25.4-mm-diameter C-sphere specimens failed from it. Predictable strength-size-scaling would therefore not result as a consequence of this because these flaw types were not homogenously distributed and sampled in both C-sphere geometries.

Scaling theory to minimize the roll-off of threshold voltage for ultra fine MOSFET (미세 구조 MOSFET에서 문턱전압 변화를 최소화하기 위한 최적의 스켈링 이론)

  • 정학기;김재홍;고석웅
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.719-724
    • /
    • 2003
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model (QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll off characteristics for threshold voltage of MOSFET with decreasing channel length, we know $\alpha$ value must be nearly 1 in the generalized scaling.

Determination of Mixing by a Scaling Behavior in Fe on Cu(001) System (Scaling 형태분석을 통한 Fe/Cu(001)계의 혼합 여부 결정)

  • Noh, H. P.;Choi, Y. J.;Park, Ji-Yong;Jeong, I. C.;Suh, Y. D.;Kuk, Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.270-274
    • /
    • 1995
  • The growth structure of Fe on CU(001) was studied by scanning tunneling microscope. An analysis of size distribution of Fe islands on Cu(001) surface was made to determine whether Fe atoms mix with substrate Cu. The size distribution deviates from the standard scaling behavior, indicating that atomic density of Fe decreases with coverage up to 1 ML. The growth can be characterized by layer-by-layer scheme from 1 ML to 5 ML. This result agrees well with previously studied, Auger spectroscopy and RHEED result.

  • PDF

Aspects of (d + D)-dimensional anisotropic conformal gravity

  • Jae-Hyuk Oh;Phillial Oh
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.20-29
    • /
    • 2022
  • We discuss various aspects of anisotropic gravity in (d+D)-dimensional spacetime, where D dimensions are treated as extra dimensions. It is based on the foliation preserving diffeomorphism invariance and anisotropic conformal invariance. The anisotropy is embodied by introducing a factor z which discriminates the scaling degree of the extra D dimensions against the d-dimensional base spacetime and Weyl scalar field which mediates the anisotropic scaling symmetry. There is no intrinsic scale but a physical scale M* emerges as a consequence of spontaneous conformal symmetry breaking. We discuss interesting lower dimensional gravity theories obtained from our model. In a (d, D) = (2, 2) case, we suggest a UV-complete unitary quantum gravity which might become Einstein gravity in IR. In a certain (2,1) case, we obtain CGHS model. Some vacuum solutions are also obtained and we discuss an issue of 'size separation' between the base spacetime and the extra dimensions. The size separation means large distinction between the scales (e.g. cosmological constant) appearing in the base spacetime and the extra dimensions respectively.

A Second Order Exact Scaling Method for Turbomachinery Performance Prediction

  • Pelz, Peter Fanz;Stonjek, Stefan Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.177-187
    • /
    • 2013
  • A scaling method valid for most turbomachines based on first principles is derived. It accounts for axial and centrifugal turbomachines with respect to relative gap width/tip clearance, relative roughness, Reynolds number and/or Mach number for design and off-design operation as well. The scaling method has been successfully validated by a variety of experimental data obtained at TU Darmstadt. The physically based, hence reliable and universal method is compared with previous, empirical scaling methods.

Performance and Convergence Analysis of Tree-LDPC codes on the Min-Sum Iterative Decoding Algorithm (Min-Sum 반복 복호 알고리즘을 사용한 Tree-LDPC의 성능과 수렴 분석)

  • Noh Kwang-seok;Heo Jun;Chung Kyuhyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.20-25
    • /
    • 2006
  • In this paper, the performance of Tree-LDPC code is presented based on the min-sum algorithm with scaling and the asymptotic performance in the water fall region is shown by density evolution. We presents that the Tree-LDPC code show a significant performance gain by scaling with the optimal scaling factor which is obtained by density evolution methods. We also show that the performance of min-sum with scaling is as good as the performance of sum-product while the decoding complexity of min-sum algorithm is much lower than that of sum-product algorithm. The Tree-LDPC decoder is implemented on a FPGA chip with a small interleaver size.

Fractal Scaling of Permeability in Unsaturated Fractured Tuff: Wavelet-Based Approach

  • Hyun, Yunjung
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.140-143
    • /
    • 2003
  • Air permeabilities in unsaturated fractured tuff at the Apache Leap Research Site (ALRS) near Superior, Arizona, exhibit a self-affine behavior, thus renders a field random fractal. Based up fractal scaling, the observed scale effect has been interpreted [Hyun et al., 2002]. Recently, Frantziskonis and Hansen [2000] presented that fractal scaling can be represented based on wavelets. This study deals with the way of using wavelets for fractal scaling. A numerical study is presented to examine the applicability of wavelet-based approach to determining upscaled air permeability values on various data supports at the site. To characterize the scaling property of self-affine fields generated based upon wavelets, Hurst coefficient, H. was inferred by applying the average wavelet coefficient (AWC) method. The result yielded H = 0.24, which is very close to the result of geostatistical analysis using a power variogram (H = 0.22). The study concludes that wavelet-based scaling is a useful way of determining parameter values on different data supports, which is an essential task for modeling of subsurface flow and mass transport in a numeric grid with different resolutions (grid size).

  • PDF

Performance Enhancement of Scaling Filter and Transcoder using CUDA (CUDA를 활용한 스케일링 필터 및 트랜스코더의 성능향상)

  • Han, Jae-Geun;Ko, Young-Sub;Suh, Sung-Han;Ha, Soon-Hoi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.507-511
    • /
    • 2010
  • In this paper, we propose to enhance the performance of software transcoder by using GPGPU for scaling filters. Video transcoding is a technique that translates a video file to another video file that has a different coding algorithm and/or a different frame size. Its demand increases as more multimedia devices with different specification coexist in our daily life. Since transcoding is computationally intensive, a software transcoder that runs on a CPU takes long processing time. In this paper, we achieve significant speed-up by parallelizing the scaling filter using a GPGPU that can provide significantly large computation power. Through extensive experiments with various video scripts of different size and with various scaling filter options, it is verified that the enhanced transcoder could achieve 36% performance improvement in the default option, and up to 101% in a certain option.

A Performance Variation by Scaling Factor in NM-MMA Adaptive Equalization Algorithm (NM-MMA 적응 등화 알고리즘에서 Scaling Factor에 의한 성능 변화)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.

On the two different sequences of the mass-size relation for early-type galaxies

  • Kim, Jin-Ah;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.48.3-49
    • /
    • 2015
  • Scaling relations of early-type galaxies (ETG) provide a deep insight into their formation and evolution. Interestingly enough, most relations extending into the dwarf regimes display non-linear or broken-linear features, unlike the linear relations for normal (i.e., intermediate-mass to giant) ETGs only. Here we investigate the mass-size scaling relation of ETGs using a massive database of galaxies from SDSS DR12. We divide ETGs into two groups by the indication of star formation such as colors, and examine their distinction along the mass-size relation. We find that the mass-size distribution of blue, young normal galaxies is in good agreement with that of dwarf ETGs. Our result suggests that blue, young normal ETGs may serve as links between (passive) normal ETGs and dwarfs. We discuss the possibility of blue, young ETGs being progenitors of dwarf ETGs.

  • PDF