• Title/Summary/Keyword: Size exclusion

Search Result 247, Processing Time 0.037 seconds

A Preparative Purification Process for Recombinant Hepatitis B Core Antigen Using Online Capture by Expanded Bed Adsorption Followed by Size-Exclusion Chromatography

  • Ho, Chin Woi;Tan, Wen Siang;Chong, Fui Chin;Ling, Tau Chuan;Tey, Beng Ti
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.416-423
    • /
    • 2009
  • Hepatitis B core antigen(HBcAg) is an important serological marker used in the diagnosis of hepatitis B virus(HBV) infections. In the current study, a fast and efficient preparative purification protocol for truncated HBcAg from Escherichia coli disruptate was developed. The recombinant HBcAg was first captured by anion exchange expanded bed adsorption chromatography integrated with a cell disruption process. This online capture process has shortened the process time and eliminated the "hold-up" period that may be detrimental to the quality of target protein. The eluted product from the expanded bed adsorption chromatography was subsequently purified using size-exclusion chromatography. The results showed that this novel purification protocol achieved a recovery yield of 45.1% with a product purity of 88.2%, which corresponds to a purification factor of 4.5. The recovered HBcAg is still biologically active as shown by ELISA test.

Comparison of Size-Exclusion Chromatography and Flow Field-Flow Fractionation for Separation of Whey Proteins

  • Kang, Da-Young;Moon, Jae-Mi;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1315-1320
    • /
    • 2011
  • Whey protein (WP) is a mixture of proteins, and is of high nutritional values. WP has become an important source of functional ingredients in various health-promoting foods. In this study, size-exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AsFlFFF) were used for separation and analysis of whey proteins. It was found that a lab-prepared WP from raw milk is mostly of ${\beta}$-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein isolate (WPI) powder contains relatively larger amount of components other than ${\beta}$-lactoglobulin, including IgG and protein aggregates. Results suggest that AsFlFFF provides higher resolution for the major whey proteins than SEC in their normal operation conditions. AsFlFFF could differentiate the BSA and Albumin, despite a small difference in their molecular weights, and also was able to separate much smaller amount of aggregates from monomers. It is noted that SEC was able to show the presence of low molecular weight components other than the major whey proteins in the WP samples, which AsFlFFF could not show, probably due to the partial loss of those low molecular weight species through the membrane.

High Temperature Size Exclusion Chromatography

  • Cho Hee-Sook;Park Soo-Jin;Ree Moon-Hor;Chang Tai-Hyun;Jung Jin-Chul;Zin Wang-Cheol
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.383-386
    • /
    • 2006
  • High temperature size exclusion chromatography (SEC) has been used widely for the characterization of crystalline polymers, for which high temperature operation above the polymer melting temperature is required to dissolve the polymers. However, this high temperature operation has many advantages in SEC separation in addition to merely increasing polymer solubility. At high temperature the eluent viscosity decreases, which in turn decreases the column backpressure and increases the diffusivity of the analytes. Therefore, many reports on the high temperature operation of high performance liquid chromatography (HPLC) have focused on shortening the analysis time and enhancing the resolution. However, the application of high temperature SEC analysis to exploit the merits of high temperature operation is scarce. In this article, therefore, we report on a new apparatus design for high temperature SEC.

Refolding and Purification of Recombinant Human $Interferon-\gamma$ Expressed as Inclusion Bodies in Escherichia coli Using Size Exclusion Chromatography

  • Guan Yi-Xin;Pan Hai-Xue;Gao Yong-Gui;Yao Shan-Jing;Cho Man-Gi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2005
  • A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human $interferon-\gamma$ ($rhIFN-\gamma$) at a high concentration. The $rhlFN-\gamma$ was overexpressed in E. coli resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the buffer-exchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded $rhIFN-\gamma$, with protein recovery of $67.1\%$ and specific activity up to $1.2\times10^7\;IU/mg$.

공동캡슐화를 이용한 키토산 분해반응에서 alginate 막의 특성 및 크기에 따른 올리고당의 분자량 내외 분포

  • Lee, Gi-Seon;Choe, Myeong-Rak;Song, Sang-Ho;Im, Hyeon-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.608-611
    • /
    • 2000
  • To separate chitosanoligosaccharides easily by size exclusion, an coencapsulating technology of substrate and enzyme was developed. Chitosan and chitosanase were enveloped in this membrane and the product released to medium by size exclusion. The lower limit of the alginate concentration and the agitation speed were 0.5% and 40 rpm, respectively. Membrane thickness and capsules diameter were $10{\mu}m$ and approx. 3.0mm, 1.5mm, respectively. The molecular weight difference by concentration and cps of alginate were of little significance. And also, the molecular weight of distribution according to enzyme concentration was low concentration of enzyme produced high molecular weight of oligosaccharides. At 1.5mm size of capsule, product diffusion rate to outer part was higher than other capsules. The molecular weight distribution of the released oligosaccharides ranged from 1000 to 6000 Da.

  • PDF

Studies on the Separation Performances of Chlorophenol Compounds from Water by Thin Film Composite Membranes

  • Yogesh, K.M. Popat;Ganguly, B.;Brahmbhatt, H.;Bhattacharya, A.
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.590-595
    • /
    • 2008
  • The pressure driven membrane process has been a breakthrough in the removal of pollutants from drinking water. These experiments examined the removal of chlorophenol compounds from water using low pressure membranes. The removal performance of the membranes was based primarily on size exclusion. Apart from size exclusion, the polarity and pKa of the compounds also influences the membrane performance. The molecular size and dipole moments of the respective molecules were calculated using a quantum chemical method. The rejection of pollutants also followed the same trend as salt rejection by the membranes.

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.

The impacts of social exclusion and the need to belong on the affective forecasting of social events (사회적 배척과 소속 욕구가 사회적 사건의 정서 예측에 미치는 영향)

  • Kim, Ae-Ri;Son, Yeong-U;Im, Hye-Bin
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.83-94
    • /
    • 2014
  • The present study examined the intensity of affective forecasting and the size of affective forecasting errors of people who experienced social exclusion or those high in need to belong. In Particular, a series of studies was designed to explore the moderating role of the types of future events (i.e. social vs. non-social events) in the relationship between social exclusion, the need to belong and affective forecasting. Results indicated that participants who experienced social exclusion or be high in need to belong showed significantly extreme affective ratings on the future social events compared to the future non-social events. Additional results suggested that more social exclusion experiences or higher needs to belong did not affect to the affective ratings on the experienced social events, indicating greater affective forecasting errors of socially excluded people or people with higher need to belong. The implications and limitations of the results were also discussed.

High Temperature Size Exclusion Chromatography for High Throughput Analysis

  • Chang, Tai-Hyun;Park, Soo-Jin;Cho, Hee-Sook;Kim, Young-Tak;Ihm, Kyu-Hyun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.202-202
    • /
    • 2006
  • With a modern size exclusion chromatography (SEC) column, molecular weight analysis of a polymer sample takes about 10 min. However, it is desirable to reduce the analysis time further, in particular, for high throughput measurements required in combinatorial analyses or 2D-HPLC analyses. We implemented the high temperature SEC for the purpose. By inserting a narrow bore tubing between the column and the detector, a sufficient backpressure can be maintained to prevent the mobile phase from boiling and the effluent is cooled down enough when it reaches the detector. Therefore, a normal SEC detector can be used without any modification. The SEC resolution is greatly improved at the elevated temperature at high flow rate which allows high speed operation.

  • PDF

Mid-term (2009-2019) demographic dynamics of young beech forest in Albongbunji Basin, Ulleungdo, South Korea

  • Cho, Yong-Chan;Sim, Hyung Seok;Jung, Songhie;Kim, Han-Gyeoul;Kim, Jun-Soo;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.241-255
    • /
    • 2020
  • Background: The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009-2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler's beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results: The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions: Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.