High Temperature Size Exclusion Chromatography

  • Cho Hee-Sook (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Park Soo-Jin (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Ree Moon-Hor (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Chang Tai-Hyun (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Jung Jin-Chul (Department of Materials Sciences and Engineering, and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Zin Wang-Cheol (Department of Materials Sciences and Engineering, and Polymer Research Institute, Pohang University of Science and Technology)
  • Published : 2006.06.01

Abstract

High temperature size exclusion chromatography (SEC) has been used widely for the characterization of crystalline polymers, for which high temperature operation above the polymer melting temperature is required to dissolve the polymers. However, this high temperature operation has many advantages in SEC separation in addition to merely increasing polymer solubility. At high temperature the eluent viscosity decreases, which in turn decreases the column backpressure and increases the diffusivity of the analytes. Therefore, many reports on the high temperature operation of high performance liquid chromatography (HPLC) have focused on shortening the analysis time and enhancing the resolution. However, the application of high temperature SEC analysis to exploit the merits of high temperature operation is scarce. In this article, therefore, we report on a new apparatus design for high temperature SEC.

Keywords

References

  1. W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern Size-Exclusion Liquid Chromatography, Practice of Gel Permeation and Gel Filtration Chromatograph, John Wiley & Sons, New York, 1979
  2. S. Mori and H. G. Barth, Size Exclusion Chromatography, Springer-Verlag, New York, 1999
  3. M. Choi, B. Chung, B. Chun, and T. Chang, Macromol. Res., 12, 127 (2004) https://doi.org/10.1007/BF03219005
  4. J.-H. Kim and J. H. Lee, Macromol. Res., 10, 54 (2002) https://doi.org/10.1007/BF03218290
  5. H. G. Barth and J. W. Mays, Modern Methods of Polymer Characterization, John Wiley & Sons, New York, 1991, Vol. 113
  6. J. Li and P. W. Carr, Anal.Chem., 69, 837 (1997) https://doi.org/10.1021/ac960854v
  7. Y. Xiang, B. Yan, B. Yue, C. V. McNeff, P. W. Carr, and M. L. Lee, J.Chromatogr. A, 983, 83 (2003) https://doi.org/10.1016/S0021-9673(02)01662-X
  8. T. Greibrokk and T. Andersen, J. Chromatogr. A, 1000, 743 (2003) https://doi.org/10.1016/S0021-9673(02)01963-5
  9. J. D. Thompson and P. W. Carr, Anal. Chem., 74, 1017 (2002) https://doi.org/10.1021/ac010917w
  10. Y. Xiang, Y. Liu, and M. L. Lee, J. Chromatogr. A, 1104, 198 (2006) https://doi.org/10.1016/j.chroma.2005.11.118
  11. D. R. Stoll and P. W. Carr, J. Am. Chem. Soc., 127, 5034 (2005) https://doi.org/10.1021/ja050145b
  12. J. Li, Y. Hu, and P. W. Carr, Anal. Chem., 69, 3884 (1997) https://doi.org/10.1021/ac9705069
  13. J. W. Dolan, L. R. Snyder, R. G. Wolcott, P. Haber, T. Baczek, R. Kaliszan, and L. C. Sander, J. Chromatogr. A, 857, 41 (1999) https://doi.org/10.1016/S0021-9673(99)00766-9
  14. G. Vanhoenacker and P. Sandra, J. Chromatogr. A, 1082, 193 (2005) https://doi.org/10.1016/j.chroma.2005.05.050
  15. L. D'Agnillo, J. B. P. Soares, and A. Penlidis, J. Polym. Sci.; Part B: Polym. Phys., 40, 905 (2002) https://doi.org/10.1002/polb.10154
  16. H. Pasch, Macomol. Symp., 165, 91 (2001)
  17. S. Mori, E. Katz, R. Eksteen, P. Schoenmakers, and N. Miller, Handbook of HPLC, Marcel Dekker, New York, 1998
  18. C. Zhu, D. M. Goodall, and S. A. C. Wren, LC-GC Eur., 17, 530 (2004)
  19. H. Poppe, J. Chromatogr. A, 778, 3 (1997) https://doi.org/10.1016/S0021-9673(97)00376-2
  20. C. N. Renn and R. E. Synovec, Anal. Chem., 64, 479 (1992) https://doi.org/10.1021/ac00029a006
  21. P. W. Atkins, Physical Chemistry, 6th Ed., Oxford University Press, Oxford, 1998
  22. D. C. Harris, Quantitative Chemical Analysis, 4th Ed., Freeman, New York, 1995