Browse > Article

High Temperature Size Exclusion Chromatography  

Cho Hee-Sook (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology)
Park Soo-Jin (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology)
Ree Moon-Hor (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology)
Chang Tai-Hyun (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology)
Jung Jin-Chul (Department of Materials Sciences and Engineering, and Polymer Research Institute, Pohang University of Science and Technology)
Zin Wang-Cheol (Department of Materials Sciences and Engineering, and Polymer Research Institute, Pohang University of Science and Technology)
Publication Information
Macromolecular Research / v.14, no.3, 2006 , pp. 383-386 More about this Journal
Abstract
High temperature size exclusion chromatography (SEC) has been used widely for the characterization of crystalline polymers, for which high temperature operation above the polymer melting temperature is required to dissolve the polymers. However, this high temperature operation has many advantages in SEC separation in addition to merely increasing polymer solubility. At high temperature the eluent viscosity decreases, which in turn decreases the column backpressure and increases the diffusivity of the analytes. Therefore, many reports on the high temperature operation of high performance liquid chromatography (HPLC) have focused on shortening the analysis time and enhancing the resolution. However, the application of high temperature SEC analysis to exploit the merits of high temperature operation is scarce. In this article, therefore, we report on a new apparatus design for high temperature SEC.
Keywords
high temperature; size exclusion chromatography; polystyrene;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 S. Mori and H. G. Barth, Size Exclusion Chromatography, Springer-Verlag, New York, 1999
2 Y. Xiang, B. Yan, B. Yue, C. V. McNeff, P. W. Carr, and M. L. Lee, J.Chromatogr. A, 983, 83 (2003)   DOI
3 J. D. Thompson and P. W. Carr, Anal. Chem., 74, 1017 (2002)   DOI   ScienceOn
4 Y. Xiang, Y. Liu, and M. L. Lee, J. Chromatogr. A, 1104, 198 (2006)   DOI
5 H. Pasch, Macomol. Symp., 165, 91 (2001)
6 C. N. Renn and R. E. Synovec, Anal. Chem., 64, 479 (1992)   DOI
7 W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern Size-Exclusion Liquid Chromatography, Practice of Gel Permeation and Gel Filtration Chromatograph, John Wiley & Sons, New York, 1979
8 J. Li and P. W. Carr, Anal.Chem., 69, 837 (1997)   DOI   ScienceOn
9 J.-H. Kim and J. H. Lee, Macromol. Res., 10, 54 (2002)   DOI
10 D. C. Harris, Quantitative Chemical Analysis, 4th Ed., Freeman, New York, 1995
11 T. Greibrokk and T. Andersen, J. Chromatogr. A, 1000, 743 (2003)   DOI
12 J. Li, Y. Hu, and P. W. Carr, Anal. Chem., 69, 3884 (1997)   DOI   ScienceOn
13 G. Vanhoenacker and P. Sandra, J. Chromatogr. A, 1082, 193 (2005)   DOI
14 D. R. Stoll and P. W. Carr, J. Am. Chem. Soc., 127, 5034 (2005)   DOI   ScienceOn
15 H. G. Barth and J. W. Mays, Modern Methods of Polymer Characterization, John Wiley & Sons, New York, 1991, Vol. 113
16 C. Zhu, D. M. Goodall, and S. A. C. Wren, LC-GC Eur., 17, 530 (2004)
17 M. Choi, B. Chung, B. Chun, and T. Chang, Macromol. Res., 12, 127 (2004)   DOI   ScienceOn
18 S. Mori, E. Katz, R. Eksteen, P. Schoenmakers, and N. Miller, Handbook of HPLC, Marcel Dekker, New York, 1998
19 P. W. Atkins, Physical Chemistry, 6th Ed., Oxford University Press, Oxford, 1998
20 L. D'Agnillo, J. B. P. Soares, and A. Penlidis, J. Polym. Sci.; Part B: Polym. Phys., 40, 905 (2002)   DOI   ScienceOn
21 J. W. Dolan, L. R. Snyder, R. G. Wolcott, P. Haber, T. Baczek, R. Kaliszan, and L. C. Sander, J. Chromatogr. A, 857, 41 (1999)   DOI
22 H. Poppe, J. Chromatogr. A, 778, 3 (1997)   DOI