• Title/Summary/Keyword: Six sigma process

Search Result 207, Processing Time 0.028 seconds

Improvement of Large Area Replicability Using DFSS in RTP System (DFSS 기법을 이용한 RTP 성형기의 대면적 전사성 향상)

  • Hong S.K.;Kim H.K.;Heo Y.M.;Kang J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.571-572
    • /
    • 2006
  • RTP (rapid thermal pressing), one of micro-pattern replication techniques like hot embossing, is focused on achieving shorter cycle time. DFSS(Design for Six Sigma) has been applied in order to enhance the completeness of the development process for RTP system. According to DIDOV roadmap, we derived design concepts and subsequently decided the main performances, design factors, and components for RTP system. In the design process of RTP system using finite element analysis, it was realized that its structural characteristics affect large area replicability. Optimizing structural design factors, based on CAE, it was checked out that its large area replicability could be improved in a virtual test. Finally, we have a plan to validate the large area replicability of the developed RTP system, by performing micro-pattern replication tests with polymeric sheets.

  • PDF

A Study on Recognition Methodology and Deduction Improvement Factors of the Registration Process for the Efficient Use of National Research Facilities & Equipments (국가연구시설.장비의 효율적 활용을 위한 인식조사와 등록프로세스 개선요인 도출)

  • Yum, DongKi;Shin, JinGyu
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.4
    • /
    • pp.733-762
    • /
    • 2014
  • The government mandates that national research facilities & equipments through R&D business budget should be registered on the National Science and Technology Information Service (NTIS) for the purpose of the efficient use of the research facilities & equipments. This study is to contribute to the national policies on the efficient management of the research facilities & equipments by recognition methodology with the university's members and analysis of the impact factors of the universities' registration process improvement through the Define level and Measure level of the Six Sigma DAMIC. The survey and interview were conducted on research directors, professors joining university administration, graduate students, researchers, and staffs of A University. The findings are the lack of understanding specific steps and life-cycle management of research facilities & equipments. It is necessary to collect suggestions from universities and pursue policies considered the unique characteristics of the university for advanced operating and maximizing use of university's national research facilities & equipments. Research facilities & equipments enrollment compliance rate and registration accuracy were selected as CTQ-Y through the Six Sigma. 72 potential cause variables were derived through Process Map and C & E Diagram. 13 variables were determined as core potential factors through the X-Y Matrix and Pareto Chart. Research institutions should maximize utilization of research facilities & equipments through deriving a potential variables of the process improvements and designing a detail improvements based on the characteristics of each institutions.

A Six Sigma Activity for Saving Electrical Energy in a University Campus (6시그마 경영혁신 기법을 활용한 대학 전기 에너지 절감 캠페인)

  • Choi, Seoung-Hoon;Yu, Jae-Pil
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • Due to increase in oil price unstableness and earth warming, energy saving has been one of the most important global issues. We report a 6 sigma project that was carried out to save electrical energy in a university campus. DMAIC, the five-phase process of 6 sigma, was applied for the energy saving campaign. This paper proposes a simple method to quantify the sigma level of the electrical energy saving status and various activities to change the consciousness of all the university members. Results were very satisfied. The 6 sigma project saved about 10% of the total electrical consumption. This is approximately 50 million won a year. The success of the 6 sigma project served as a momentum to promote "Green Scholarship" that has become the center of public interest. Also, we have valuable experiences in the 6 sigma training that shows the university campus can be successfully used as a good place for the actual 6 sigma training.

Tolerance Optimization of Lower Arm Used in Automobile Parts Considering Six Sigma Constraints (식스시그마 제약조건을 고려한 로워암의 공차 최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1323-1328
    • /
    • 2011
  • In the current design process for the lower arm used in automobile parts, an optimal solution of its various design variables should be found through exploration of the design space approximated using the response surface model formulated with a first- or second-order polynomial equation. In this study, a multi-level computational DOE (design of experiment) was carried out to explore the design space showing nonlinear behavior, in terms of factors such as the total weight and applied stress of the lower arm, where a fractional-factorial orthogonal array based on the artificial neural network model was introduced. In addition, the tolerance robustness of the optimal solution was estimated using a tolerance optimization with six sigma constraints, taking into account the tolerances occurring in the design variables.

Problems of Special Causes in Feedback Adjustment

  • Lee, Jae-June;Cho, Sin-Sup
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Process adjustment directs on maintaining a process output close to a target value by manipulating another controllable variable, by which significant process improvement can be achieved. Therefore, this approach can be applied to the 'Improve' stage of Six Sigma strategy. Though the optimal control rule minimizes process variability in general, it may not properly function when special causes occur in underlying process, resulting in off-target bias and increased variability in the adjusted output process, possibly for long periods. In this paper, we consider a responsive feedback control system and the minimum mean square error control rule. The bias in the adjusted output process is investigated in a general framework, especially focussing on stationary underlying process and the special cause of level shift type. Illustrative examples are employed to illustrate the issues discussed.

Problems of Special Causes in Feedback Adjustment

  • Lee Jae June;Cho Sinsup;Lee Jong Seon;Ahn Mihye
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.425-429
    • /
    • 2004
  • Process adjustment Is a complimentary tool to process monitoring in process control. Process adjustment directs on maintaining a process output close to a target value by manipulating another controllable variable, by which significant process improvement can be achieved. Therefore, this approach can be applied to the 'Improve' stage of Six Sigma strategy. Though the optimal control rule minimizes process variability in general, it may not properly function when special causes occur in underlying process, resulting in off-target bias and increased variability in the adjusted output process, possibly for long periods. In this paper, we consider a responsive feedback control system and the minimum mean square error control rule. The bias in the adjusted output process is investigated in a general framework, especially focussing on stationary underlying process and the special cause of level shift type. Illustrative examples are employed to illustrate the issues discussed.

  • PDF

Process Capability Analysis by a New Process Incapability Index

  • Kim, Hee-Jung;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.457-469
    • /
    • 2007
  • Process Capability Indexes(PCI) are used as the measure for evaluation of process capability analysis and is the statistical method for efficient process control. The fourth generation $PCI(C_{psk})$ is constructed from $C_{pmk}$ by introducing the factor $\mid\mu-T\mid$ in the numerator as an extra penalty for the departure of the process mean from the preassigned target value T And Process Incapability Indexes(PII) are presented by inversing PCI and include the information of PCI. This paper introduces the PII $C_{ss}^*$ provide manager with various information of process and include Gage R&R. PII $C_{ss}^*$ is presented by inversing PCI $C_{psk}$ and include the information of PCI $C_{psk}$.

  • PDF

A Study on the manufacturing process using the sensitivity analysis of stochastic network (감도분석에 의한 제조공정연구)

  • 박기주
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.63
    • /
    • pp.65-77
    • /
    • 2001
  • A more technical perspective is needed in estimating the effect of the Manufacturing Process for improving the Productivity, there are many statistical evaluation methods, convenience sampling, frequencies, histogram, QC seven tools, control chart etc. It is more important for the companies to use six sigma to reduce defective and improve the process control than the technical definition as a disciplined quantitative approach for improvement of process control and a new way of quality innovation. Process network analysis is a technique which has the potentiality for a wide use to improve the manufacturing process which other techniques can't be used to analyze effectively. It has some problems to analyze the process with feedback loops. The branch probabilities during quality inspections depend upon the number of times the product has been rejected. This paper presents how to improve the manufacturing process by statistical process control using branch probabilities, Moment Generating Function(MGF) and Sensitivity Equation.

  • PDF

The Influence of Learner's Individual Characteristics on Using Six Sigma and the Structural Role of an Organization's Learning Culture and its Support (학습자 개인특성이 6시그마 활용에 미치는 영향과 조직의 학습문화 및 조직지원의 구조적 역할)

  • Choi, Seung-Eun;Kim, Min-Sun;Kang, So-Ra
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.2
    • /
    • pp.19-45
    • /
    • 2010
  • This research has analyzed the differentiated influence of organizational variables(an organization's learning culture and organizational support networks) and personal variables(the individual's motivation to learn and self-efficacy) on the process of gaining and using of knowledge. These two variables have been regarded as the major variables for the successful learning of 6Sigma, according to Social Cognitive Theory. In addition, this research has proven the role structure of the abovementioned two variables through a suitable methodology(Hierarchical Linear Model). In regard to this methodology, the different hierarchical level of the personal variable and organizational variable was especially focused on, and the effect of interaction between the high level and the low level was considered in detail. Considering the current situation, in that the importance of organizational factor and personal factor has been emphasized but the accurate role of each variable has not been verified, the research model is thought to help to establish an effective strategy to implement 6 Sigma.

  • PDF

Comparision of Hypothesis Tests and Interval Estimations for Homogeneous and Heterogeneous Populations (동질성 및 이질성 모집단의 가설검정과 구간추정의 비교)

  • Choi, Sung-Woo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.365-370
    • /
    • 2009
  • The present study proposes the various hypothesis tests and interval estimations for homogeneous and heterogeneous populations in the continuous and discrete process. These results can be used to complement the QC story 15 steps for quality improvement circle and DMAIC processes for six sigma innovation.

  • PDF