• Title/Summary/Keyword: Situation Learning

Search Result 1,124, Processing Time 0.024 seconds

Design of Block-based Modularity Architecture for Machine Learning (머신러닝을 위한 블록형 모듈화 아키텍처 설계)

  • Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.476-482
    • /
    • 2020
  • In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.

Direction of ICT Using Learning for Lifelong Learning - Air and Correspodence High School- (이러닝 평생교육을 위한 ICT 활용 교육의 방향 -방송통신고등학교를 중심으로-)

  • Ahn Seong-Hun;Jeong Young-Sik;Yang Hee-In
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.310-314
    • /
    • 2005
  • The situation around the ICT using education is not supporting enough. In this paper, We propose the direction of ICT using learning for lifelong teaming. Thus this paper make a contribution to e-learning for lifelong learning.

  • PDF

Behavior-based Learning Controller for Mobile Robot using Topological Map (Topolgical Map을 이용한 이동로봇의 행위기반 학습제어기)

  • Yi, Seok-Joo;Moon, Jung-Hyun;Han, Shin;Cho, Young-Jo;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2834-2836
    • /
    • 2000
  • This paper introduces the behavior-based learning controller for mobile robot using topological map. When the mobile robot navigates to the goal position, it utilizes given information of topological map and its location. Under navigating in unknown environment, the robot classifies its situation using ultrasonic sensor data, and calculates each motor schema multiplied by respective gain for all behaviors, and then takes an action according to the vector sum of all the motor schemas. After an action, the information of the robot's location in given topological map is incorporated to the learning module to adapt the weights of the neural network for gain learning. As a result of simulation, the robot navigates to the goal position successfully after iterative gain learning with topological information.

  • PDF

A Study of Machine Learning based Face Recognition for User Authentication

  • Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.96-99
    • /
    • 2020
  • According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound (음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법)

  • Hyuntae Cho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

Study on the Mathematics Teaching and Learning Artificial Intelligence Platform Analysis (수학 교수·학습을 위한 인공지능 플랫폼 분석 연구)

  • Park, Hye Yeon;Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • The purpose of this study is to analyze the current situation of EduTech, which is proposed as a way to build a flexible learning environment regardless of time and place according to the use of digital technology in mathematics subjects. The process of designing classes to use the EduTech platform, which is still in the development introduction stage, in public education is still difficult, and research to observe its effects and characteristics is also in its early stages. However, in the stage of preparing for future education, it is a meaningful process to grasp the current situation and point out the direction in preparation for the future in which EduTech will be actively applied to education. Accordingly, the current situation and utilization trends of EduTech at home and abroad were confirmed, and the functions and roles of EduTech platforms used in mathematics were analyzed. As a result of the analysis, the EduTech platform was pursuing learners' self-directed learning by constructing its functions so that they could be useful for individual learning of learners in hierarchical mathematics education. In addition, we have confirmed that the platform is evolving to be useful for teachers' work reduction, suitable activities, and evaluations learning management. Therefore, it is necessary to implement instructional design and individual customized learning support measures for students that can efficiently utilize these platforms in the future.

Pre-Service Chemistry Teachers' Awareness of Visually Impaired Students' Learning Situation through Scientific Inquiry about Molecular Structure of Ice in Darkroom (얼음의 분자구조에 대한 암실 속 과학탐구 활동에서 시각장애학생의 학습상황에 대한 예비 화학교사들의 인식)

  • Kim, Hak Bum;Cha, Jeongho
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.277-285
    • /
    • 2017
  • The purpose of this study is to investigate the perspective of pre-service chemistry teachers on the learning situations of visually impaired students through scientific inquiry in a darkroom and to propose a teaching and learning method for students with visual impairments. Twenty-one pre-service chemistry teachers from college of education in Gyeongbuk were encouraged to explore individually hands-on model for the molecular structure of ice freely, and had a discussion with a one of the researchers during the activity. All the conversation and discussion were audio-taped and transcribed for analysis. As a result, pre-service chemistry teachers realized that learning situation of the visually impaired students was quite different with their perception while exploring and figuring out hands-on model of the molecular structure of ice in the darkroom. They already learned and could see this model by themselves but also recognized that visually impaired students had inconvenience and difficulty in learning science concepts. Based on these reflections, some pre-service chemistry teachers suggested directions for modification to fit visually impaired students' needs more.

Comparison of learning effects between hybrid flipped learning and flipped learning (하이브리드 플립드 러닝과 플립드 러닝의 학습 효과 비교)

  • Bo-ram Choi
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.2
    • /
    • pp.90-104
    • /
    • 2024
  • Background: Hybrid learning is an educational approach that combines the teaching methods of online and lecture-style classes to compensate for each method's strengths and weaknesses. Compared to lecture-style classes, flipped learning improves overall class satisfaction and self-directed learning but is associated with lower learning motivation. It is necessary to determine whether hybrid flipped learning can solve the learning motivation problem of flipped learning by incorporating flipped learning into hybrid learning. The purpose of this study is to compare the effects of hybrid flipped learning and flipped learning on students' learning ability. Design: Cross-sectional study Methods: For students in the Department of Physical Therapy, classes were conducted using both flipped learning and hybrid flipped learning. In both learning methods, students took online classes first and participated in them every week. Flipped learning classes was conducted offline at school every week, while hybrid flipped learning alternated between live classes on YouTube and offline classes at school every other week. Results: Hybrid flipped learning resulted in significantly lower learning satisfaction and course evaluation than flipped learning, with no significant difference in grades. Conclusion: Hybrid flipped learning was able to cope with the situation well with the non-face-to-face teaching method caused by COVID-19, but it was difficult to improve learning ability because there were restrictions on activities that could interact with students. Flipped learning is a smooth offline activity that enables two-way activities between professors and students to improve learning ability, but the effect of improving test scores is still unclear.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.