• Title/Summary/Keyword: Sitosterol

Search Result 434, Processing Time 0.033 seconds

Sterol Composition of Rice Bran Oil (미강유중(米糠油中)의 Sterol조성(組成))

  • Jeong, Tae-Myoung;Yang, Min-Suk;Hah, Bong-Suk
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.119-128
    • /
    • 1984
  • The unsaponifiable from rice bran oil was fractionated into 4-desmethyl-'4-monomethyl- and 4, 4-dimethylsterol (triterpene alcohol) fraction by thin layer chromatography (TLC), and sterol composition of the each fraction was analyzed by gas liquid chromatography(GLC). The sterol peaks not well separated by GLC were further fractionated by $AgNO_3-TLC$, then analyzed using GLC. Each components in the three sterol fractions were identified by GLC and gas chromatography-maps spectrometry. As the results, ten sterols were confirmed as 4-desmethylsterol, nine as 4-monomethylsterol and four as 4, 4-dimethylsterol. Such uncommon phytosterols in higher plants as fucosterol, 24-ethyllophenol, 4${\alpha}$-methylstigmasta-7, 25-dienol and 28-isocitrostadienol were detected in rice bran oil and the biosynthetic pathways of the phytosterols were deduced with all the identified sterols.

  • PDF

Comparison of Vitamin E, Phytosterols and Fatty Acid Composition in Commercially Available Grape Seed Oils in Korea (국내 시판 포도씨유의 비타민 E, 식물성스테롤 및 지방산조성 비교)

  • Wie, Min-Jung;Seong, Ji-Hae;Jeon, Keon-Wook;Jung, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.953-956
    • /
    • 2008
  • Grape seeds have recently been utilized for the production of seed oil. Grape seed oils (GSOs) are generating increasing interest as a functional food product since it has been shown to contain high levels of vitamin E, unsaturated fatty acids, and phytosterols. The objective of this study was to determine the compositions of vitamin E, fatty acids, and phytosterols in commercially available grape seed oils in Korea. Vitamin E was analyzed by HPLC with fluorometric detector and phytosterol and fatty acid composition was analyzed by GC. GSOs contained total vitamin E in the range of 34.6 to 66.1 mg/100 g oil and high levels of tocotrienols. The GSOs are mainly composed of linoleic acid ranging from 60 to 76%. GSOs also contained $77.0{\sim}166.9\;mg$ of phytosterols/100 g oil.

Phytosterols content of Keunnunjami germ and its antioxidative effects in adult rats (큰눈자미 배아의 식물성 스테롤 함량 및 성숙기 흰쥐에서 항산화 효과)

  • Liang, Jie;Ma, Jing Wen;Chung, Soo Im;Kang, Mi Young
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.99-110
    • /
    • 2020
  • Purpose: The rice germ fraction is a better source of protein, lipid, and fiber than the rice endosperm. Furthermore, the rice germ is rich in bioactive phytochemicals such as γ-aminobutyric acid, tocopherols, tocotrienols, phytic acid, and so on. In this study, the phytosterol content and antioxidant activity of Keunnunjami germ (KG) or normal rice germ supplement were investigated in healthy adult rats. Methods: In vitro, quantitative assessment of phytosterols, including β-sitosterol, campesterol, cycloartenol, and stigmasterol, was performed. Comparative antioxidant activities of 2 rice germs were measured based on DPPH radical scavenging activity, reducing power, and ABTS radical scavenging capacity. In vivo, male Spraque-Dawley rats (30-weeks-old) were randomly assigned a diet of normal control (NC, AIN-93M diet), AIN-93M diet supplemented with normal rice germ 3% (NG3), or AIN-93M diet supplemented with KG 3% (KG3) and fed for 8 weeks. Results: KG contained significantly higher campesterol and stigmasterol contents and antioxidant activity than normal rice germ. The KG3 group exhibited significantly lower body weight gain as well as inguinal and total white adipose tissue weights. There were no significant differences in plasma glucose, insulin, C-peptide, or homeostasis model assessment of insulin resistance level among the 3 groups. The plasma tumor necrosis factor-α concentration was significantly lower while leptin, advanced oxidation protein products, and interleukin-6 showed downward trends in the KG3 group. In addition, the superoxide dismutase level of the KG3 group was significantly higher compared to the NC and NG3 groups. Conclusion: This study indicates that KG can be considered as a valuable source of phytosterol components. Lastly, KG has strong antioxidant properties and may have potential to ameliorate elevation of proinflammatory cytokine production with age.

Study on the Changes in Saponins from Ginseng Callus by Tissue Culture -Part 1. Comparison of Saponins from Callus Tissue and from the Root of Ginseng Plant- (조직배양(組織培養)에 의한 인삼성분(人蔘成分)의 변화(變化) -제1보(第一報) Callus와 인삼성분(人蔘成分)의 비교(比較)-)

  • Yang, R.;Choi, Y.C.;Kim, H.J.;Lee, S.C.;Park, S.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.181-188
    • /
    • 1978
  • To study on the changes in saponins from callus mass by tissue culture, the callus was derived from the petiole of Korean Ginseng (Panax Ginseng C.A. Meyer) and cultivated on Murashige and Skoog's agar medium supplemented with 2.4-dichlorophenoxyacetic acid and kinetin for 8 months. Then, well-grown callus was analyzed for its components estimation. The results obtained are as follows: (1) When saponins isolated from callus mass were chromatographed on a silca gel plate, and determined by the thinchrograph TFG-10, the ratio of Rb, c to Rg(f) in saponins was 2.16 to 1 and Rb, c, d to Re, g (f) was 1 to 1.63, while in the case of saponins from the root of Panax Ginseng grown by soil culture, the ratio of Rb, c to Rg(f) was 1.03 to 1 and the ratio of Rb, c,d to Re, g(f) was 1 to 1.17. (2) Sapogenins were obtained from the hydrolysates of saponins, and determined by thinchrograph TFG-10. The ratio of panaxadiol to panaxatriol in sapogenins from callus saponins was 2.66 to 1, while the ratio of panaxadiol to panaxatriol in sapogenins from ginseng root saponins was 1.86 to 1. From the results above mentioned, we concluded that the relative contents of sapogenins in saponins from callus mass by tissue culture were different from those in saponins from ginseng root by soil culture.

  • PDF

IM-133N - A Useful Herbal Combination for Eradicating Disease-triggering Pathogens in Mice via Immunotherapeutic Mechanisms

  • Firashathulla, Syed;Inamdar, Mohammed Naseeruddin;Rafiq, Mohamed;Viswanatha, Gollapalle Lakshminarayanashastry;Kumar, Lakkavalli Mohan Sharath;Babu, Uddagiri Venkanna;Ramakrishnan, Shyam;Paramesh, Rangesh
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Objectives: The present study was undertaken to evaluate the immunomodulatory (IM) activity of IM-133N, a herbal combination in various immunotherapeutic experimental models. Methods: The IM activity of IM-133N was evaluated against three experimental models namely, effect of IM-133N against Escherichia coli (E. coli)-induced abdominal sepsis in mice, and carbon clearance test was performed in Wistar albino rats to evaluated the phagocytic potential of IM-133N, in addition IM-133N was evaluated for its immunoglobulin enhancing potential in rats, where the immunoglobulin levels were measured by zinc sulphate turbity (ZST) test. Further, IM-133N was subjected for detailed liquid chromatography-mass spectrometry (LC-MS)/MS analysis to identify the probable active constituents present in it. Results: The findings of the present study has demonstrated very promising IM property of IM-133N in all the experimental models. Briefly, pretreatment with IM-133N at 125, 250, 500 and 1,000 mg/kg, p.o. doses had protected the mice against E. coli-induced abdominal sepsis and mortality, further the effect of IM-133N was found to be significant and dose-dependent. In support of this, in another study administration of IM-133N showed a significant and dose-dependent increase in serum immunoglobulin levels, estimated by ZST test. In line with the above findings, in the carbon clearance test the low doses (125 and 250 mg/kg, p.o.) of IM-133N increased the rate of carbon clearance, whereas the higher doses (500 and 1,000 mg/kg, p.o.) did not sustain the response, and saturation effect was considered as one of the possible reason for futility of higher doses for IM-133N. In addition, A detailed LC-MS/MS analysis of IM-133N showed 17 bioactive phytochemical constituents: namely, apigenin, chaulmoogric acid, mesquitol, quercetin, symphoxanthone, salireposide, ${\beta}$-sitosterol, nonaeicosanol, ${\beta}$-amyrin, betulic acid, oleanolic acid, symplososide, symponoside, symploveroside, symplocomoside, symconoside A and locoracemoside B. Conclusion: These findings suggest that IM-133N possesses significant IM activity and, hence, could be useful for eradicating opportunistic disease-triggering pathogens via immunotherapeutic mechanisms. The findings also suggest IM-133N may also useful in other immunity disorders.

A Study on Physiochemical Characteristics of Xanthoceras sorbifolia Seeds Oil (문관나무 종자유의 이화학적 특성 분석)

  • Park, Yu Hwa;Lee, Ki Yeon;Hong, Soo Young;Kim, Hee Yeon;Heo, Nam Ki;Kim, Kyung Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1747-1752
    • /
    • 2012
  • This study investigated the physiochemical characteristics of Xanthoceras sorbifolia seed oil. Xanthoceras sorbifolia seed oil was extracted by supercritical fluid extraction (420 atm, $50^{\circ}C$), hexane extraction and heat-pressed extraction ($160^{\circ}C$, $180^{\circ}C$). Acid values and peroxide values were evaluated, as well as the degree of lipid oxidation. The heat-pressed ($160^{\circ}C$) extraction gave a $53.5{\pm}2.5%$ higher yield of oil, compared with the other extraction methods. The acid values from the super critical fluid extraction were the highest, while peroxide values were highest from the heat-pressed extraction at $160^{\circ}C$ (3.10 meq/kg). The contents of linolenic acid and oleic acid were 38.63~41.13% and 26.29~26.85%, respectively. Contents of stigmasterol and ${\beta}$-sitosterol were 6.01~6.49 mg/100 g and 58.19~59.85 mg/100 g, respectively. These results indicate that Xanthoceras sorbifolia seed oil can possibly serve as new edible oils.

Comparison of lipid constituents and oxidative properties between normal and high-oleic peanuts grown in Korea (국내산 땅콩의 일반 품종과 고올레산 품종에 대한 지용성 영양성분과 산화안정성 비교)

  • Lim, Ho-Jeong;Kim, Mi-So;Kim, Da-Som;Kim, Hoe-Sung;Pae, Suk-Bok;Kim, Jae Kyeom;Shin, Eui-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Generally, peanuts are classified as high-fat foods as they possess high proportions of fatty acids. This study compared lipid constituents and properties between normal and high-oleic peanuts. Gas Chromatography-Flame Ionization Detector (GC-FID) analyses revealed that the fatty acid levels were significantly different between the normal and higholeic peanuts (p<0.05). Eight fatty acids were identified in the samples, including palmitic (C16:0), stearic (C18:0), oleic (C18:1, n9), linoleic (C18:2, n6), arachidic (C20:0), gondoic (C20:1, n9), behenic (C22:0), and lignoceric (C24:0) acids. Four tocopherol homologs were detected, and ${\alpha}$- and ${\gamma}$-tocopherols were the predominant ones. Tocopherols were rapidly decomposed during 25 day storage at $80^{\circ}C$. The main identified phytosterols were beta-sitosterol, ${\Delta}^5$-avenasterol, campesterol, and stigmasterol. Acid and peroxide values indicated that high-oleic peanuts have better oxidative stability than normal peanuts. These results can serve as the basis for the use of peanuts in the food industry.

Synthesis and Characterization of Structured Lipids from Evening Primrose Seeds Oil and Rice Bran Oil (달맞이꽃 종자유와 미강유로부터 효소적 합성한 재구성 지질의 이화학적 특성 분석)

  • Kim, Hyo-Jin;Lee, Kyung-Su;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1156-1164
    • /
    • 2010
  • Structured lipids (SLs) were synthesized by enzymatic interesterification with evening primrose oil (EPO) and rice bran oil (RBO) in a batch-type reactor. The interesterification was performed using a water shaker for 24 hr at $55^{\circ}C$. Mixing speed was set at 200 rpm and Lipozyme RM IM (immobilized lipase from Rhizomucor miehei, 10% by weight of total substrates) was used as a biocatalyst. Rice bran oil and evening primrose oil were interesterified with various molar ratios (RBO : EPO, 1:3, 1:4, and 1:5 mol/mol). Reversed-phase high performance liquid chromatography connected with evaporative light-scattering detector was performed to separate the triacylglycerol (TAG) species of SLs. In the fatty acid analysis, $\gamma$-linolenic acid (7.9 mol%), linoleic acid (67.3 mol%) and oleic acid (13.2 mol%) were the most abundant fatty acids in the SLs. During 24 hr reaction, most of the reaction occurred within 3 hr. TAG compositions, tocopherols and phytosterols were also analyzed. In the TAG species analysis, LLL (ECN=42, L=linoleic acid) dramatically decreased when the reaction time increased.

Studies about the bioactive component analysis and an oral glucose tolerance test of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) for confirmation of diabetes therapy (가감생혈윤부음(加減生血潤膚飮)의 당뇨병 치료효과 확인을 위한 생리활성성분 분석과 경구포도당부하 연구)

  • In, Jeongdo;Im, Daisig;Kim, Won-Ill
    • Herbal Formula Science
    • /
    • v.24 no.2
    • /
    • pp.80-99
    • /
    • 2016
  • Objectives : Instrumental chemical analysis was utilized to investigate the effect of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) on diabetic treatment. One of the most exciting, yet also controversial, arguments is the safety and biological mechanisms of the natural medicine on human body. Therefore, the aim of this study is to provide a better understanding on bioactive chemical components, hazards of heavy metal contamination and biological mechanism of the diabetic medicine composed of 12 different natural herbs. Methods : To study bioactive compound and metallic component in the diabetic medicine in detail, LC-MS/MS (Liquid Chromatography-Mass/Mass), GC (Gas Chromatography) and ICP (Inductively Coupled Plasma) were utilized to characterize the extract of the diabetic medicine and the result was compared with 18 marker substances selected from literature survey. In addition, in vitro assay experiments including GPR 119 activity and human DGAT-1 inhibition, and OGTT (Oral Glucose Tolerance Test) were performed to verify the effectiveness of this medicine on diabetic treatment. Results : Out of 18 marker substances, 9 bioactive compounds were identified from LC-MS/MS analysis which include Citruline, Catalpol, Berberine, Ginsenoside Rb1, Ginsenoside Rg1, Oleanolic acid, β-Sitosterol, Mangiferin, and Schizandrin. ICP study on 245 residual pesticides revealed that 239 species were not detected but 6 species, Dimethomorph, Trifloxystrobin, Pyraclostrobin, Isoprocarb, Carbaryl and Flubendiamide, while the amounts are trace levels, below permitted concentrations. The biological activity was observed in vitro assay and Oral Glucose Tolerance Test(OGTT), which are consistent with a preliminary clinical test result, a drop in blood sugar level after taking this herbal medicine. Conclusions : Instrumental chemical analysis using LC-MS/MS, GC, and ICP was conducted successfully to identify bioactive compounds in AO-SHU for the treatment of diabetes, finding 9 bioactive compounds. Furthermore, in vitro assay experiments and OGTT show that AO-SHU has its biological activities, which imply that it can be a candidate for the future diabetes remedy.

Changes in Nutraceutical Lipid Constituents of Pre- and Post-Geminated Brown Rice Oil (발아 전후 현미유에서의 기능성 지질성분 변화)

  • Kwak, Ji-Eun;Yoon, Sung-Won;Kim, Dae-Jung;Yoon, Mi-Ra;Lee, Jeong-Heui;Oh, Sea-Kwan;Kim, In-Hwan;Lee, Jun-Soo;Lee, Jeom-Sig;Chang, Jae-Ki
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.591-600
    • /
    • 2013
  • This study investigated the changes in the nutraceutical lipid components of brown rice oil after germination. Four different high-yielding cultivars (Dasan1, Segyejinmi, Hanareum1 and Hanareum2) of Korean brown rice were selected and brown rice oil was extracted from each cultivar before and after germination. Free fatty acid, squalene, policosanols, and isomers of phytosterol were analyzed using GC, and isomers of tocols (tocopherol and tocotrienol) and ${\gamma}$-oryzanol were quantified using HPLC from both brown rice oil (BRO) and germinated brown rice oil (GBRO). The contents of phytosterol isomers, campesterol, stigmasterol, and ${\beta}$-sitosterol were increased by 8.3%, 31.6%, 3.3% in GBRO, respectively. Furthermore, the squalene content showed the highest increase of up to 2.4 fold in GBRO compared to BRO. In addition, linoleic and linolenic acid composition increased whereas oleic and palmitic acid decreased in the GRBO. However, the contents of tocols (tocopherol and tocotrienol) in GBRO were lower than those in BRO, and there was no significant difference in policosanol and ${\gamma}$-oryzanol between GBRO and BRO. These results suggest that GBRO has the potential as a healthy and functional source due to its lipid profile on improved lipid metabolism.