• Title/Summary/Keyword: Sinusoidal Vibration

Search Result 268, Processing Time 0.026 seconds

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

Three dimensional finite elements modeling of FGM plate bending using UMAT

  • Messaoudi, Khalid;Boukhalfa, Abdelkrim;Beldjelili, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.487-494
    • /
    • 2018
  • The purpose of the present paper is to study the bending and free vibration of Functionally Graded Material (FGM) plate using user-defined material subroutine on the finite element software ABAQUS. The FGM plate is simply supported and subjected to sinusoidal and uniform load. The Poisson's ratio is kept constant. The results obtained compared to those available in the literature show the convergence, the exactitude and the efficiency of the method used with various power index of the materials.

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory (최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

Vibration Analysis of Structure with Nonlinear Joint Using Describing Function (기술함수를 이용한 비선형 결합부를 가진 구조물의 진동해석)

  • 박해성;지태한;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.372-379
    • /
    • 1994
  • In this study, the describing function is adopted to represent nonlinearity in the system equations. The compliance can be obtained by solving nonlinear simultaneous algebraic quations for multi-degrees-of-freedom system with multinonlinearities. When the technique is applied, the nonlinearity of the system can be identified from the compliance which is obtained from the sinusoidal excitation of the system. By employing the describing function in the Building Block Analysis, we can extensively develop the BBA into investigation of the continuous systems with nonlinearities. The evaluated compliance can quantitatively show the effects of nonlinearity such as the transfer of the natural frequency, the variance of the compliance at the natural frequency, and the jump phenomena which occur during sweeping of the excitation frequency.

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum -Application on Faults Detection in a Bearing System (최소 분산 캡스트럼을 이용한 노이즈 속에 묻힌 임펄스 검출 방법-베어링 결함 검출에의 적용)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.985-990
    • /
    • 2000
  • The signals that can be obtained from rotating machines often convey the information of machine. For example, if the machine under investigation has faults, then these signals often have pulse signals, embedded in noise. Therefore the ability to detect the fault signal in noise is major concern of fault diagnosis of rotating machine, In this paper, minimum variance cepstrum (MV cepstrum) . which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique. various experiments have been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults and also shows the pattern of excitation by the faults.

  • PDF

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정)

  • 이건명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

Free Vibrations of Curved Beams Partially Supported on Elastic Foundation (탄성지반으로 부분 지지된 곡선보의 자유진동)

  • 이병구;최규문;이태은;김무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.106-115
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams partially supported on elastic foundations. Taking account of the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation. Differential equations are numerically solved to calculate natural frequencies and mode shapes. The experiments were performed in which the free vibration frequencies of such curved beams in laboratorial scale were measured and these results agreed quite well with the present studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members are considered. The parametric studies are performed and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Design of Flux Barrier in IPM type BLDC motor for Reducing Cogging Torque (코깅토크 저감을 위한 IPM type BLDC전동기의 자속장벽 형상 설계)

  • Park, Hyun-Kag;Yang, Byoung-Yull;Rhee, Sang-Bong;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.815-816
    • /
    • 2006
  • This paper proposes a novel design method for flux barrier which built in q-axis in rotor of IPM type BLDC motor. It aims to reduce the motor vibration with reduced cogging torque and lessened torque ripple by the sinusoidal waveform distribution of flux generated in the permanent magnet, which results from designed flux barriers. Design of flux barrier optimized using the Taguchi methods that considered multiple quality characteristics, such as cogging torque, average torque and efficiency are considered. The result of proposed method is compared and verified with 2D finite element method (FEM).

  • PDF

A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions (형상과 단부조건에 따른 아치의 비선형 동적거동)

  • 여동훈;이상호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF