• 제목/요약/키워드: Sintering properties

검색결과 2,386건 처리시간 0.023초

소결온도에 따른 $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] 세라믹스의 구조적 특성 (Structural Properties of $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] Ceramics with Sintering Temperature)

  • 이상철;김지헌;김강;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.76-79
    • /
    • 2000
  • The $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics were prepared by conventional mixed oxide method. The structural properties of the BZT ceramics with the sintering temperature were investigated by XRD, SEM. The BZT ceramics have a complex-perovskite structure. The BZT ceramics sintered at $1550^{\circ}C$ had a superstructure plane of BZT(100). Increasing the sintering temperature, the bulk density and ordering were increased. The bulk density of the BZT ceramics sintered at $1550^{\circ}C$ was $7.50[g/cm^3]$. Increasing the sintering temperature, the average grain size were increased and pore were decreased.

  • PDF

Zn-Pr-Co-Cr-Tb계 바리스터의 전기적 특성 및 안정성에 소결온도가 미치는 영향 (Effect of Sintering Temperature on Electrical Properties and Stability of Zn-Pr-Co-Cr-Tb-Based Varistors)

  • 남춘우
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.298-302
    • /
    • 2007
  • The electrical properties and its stability of Zn-Pr-Co-Cr-Tb-based varistors were investigated for different sintering temperatures. As the sintering temperatures increased, the varistor voltage decreased in the range of $705.2{\sim}299.1$ V/mm, the nonlinear coefficient decreased in the range of $42.4{\sim}31.7$, and the leakage current was in the range of $1.0{\sim}1.7\;{\mu}A$. The stability of electrical characteristics increased with the increase of sintering temperature. The varistors sintered at $1350^{\circ}C$ marked the high electrical stability, with $%\Delta$ $V_{1mA}=+0.1%,\;%\Delta{\alpha}=+3.2%$, and $%{\Delta}I_L=+117.6%$ for DC accelerated aging stress state of $0.95V_{1mA}/150^{\circ}C/24\;h$.

글래스 천이 공정에 의해 저온소결된 PZTN (PZTN Sintered at the Low Temperature by the Glass Phase Transient Processing)

  • 김찬영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권3호
    • /
    • pp.97-102
    • /
    • 2005
  • This research was a fundamental study for the low temperature sintering of PZTN by glass phase transient processing. To lower the sintering temperature, the glass phase Processing was used. Also to improve the electrical properties, the transient processing was utilized. After characterization, the various analytic techniques, such as Archimedes method for the measuring densification, x-ray diffraction patterns for the quantitative analysis of crystalline phases were utilized. Also the dielectric constant, dissipation factor, and piezoelectric coefficients were measured to evaluate the PZTN sintered at the $950^{\circ}C$ and $1050^{\circ}C$. This was confirmed that the sintering temperature of PZTN was reduced by $950^{\circ}C$ and the electrical properties were improved by the transition processing. Therefore, the glass phase transient processing can be applicable to low the sintering temperature with the dielectric and piezoelectric properties.

PCW-PNN-PZT+0.5 wt%MnO2 세라믹스의 소결 및 압전특성 (Piezoelectric Properties and Sintering of PCW-PNN-PZT+0.5 wt%MnO2 Ceramics)

  • 신혜경;정보람;주진수;배선기
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.453-457
    • /
    • 2008
  • In this thesis, piezoelectric properties and sintering properties of PCW-PNN-PZT+0.5 wt%$MnO_2$ ceramics adding $B_2O_3$ after creating the specimens with a general method. The lattice constant from the analysis of crystal structure showed that the crystal structure of ceramic features both rhombohdral and tetragonal structures and that the pychlore structure was decreased with the increase of the sintering temperature. The electromechanical coupling coefficient showed its maximum of 31 % in the sintered specimens at $1050^{\circ}C$, and its minimum of 20 % in the sintered specimens at $1150^{\circ}C$. The mechanical quality coefficient marked the maximum of 139 at the sintering temperature of $1150^{\circ}C$.

Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound

  • Jeong, Kwang-yong;Lee, Chul Hee;Dharmaiah, Peyala;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2017
  • We fabricate fine (<$20{\mu}m$) powders of $Bi_{0.5}Sb_{1.5}Te_3$ alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient ($217{\mu}V/K$) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<$20{\mu}m$) powders.

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.37-42
    • /
    • 2015
  • The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.

BaTiO$_3$ 세라믹의 마이크로파 소성 및 전기적 특성 (Microwave Sintering Behavior and Electrical Properties of BaTiO$_3$ Ceramics)

  • 배강;김호기
    • 한국세라믹학회지
    • /
    • 제35권11호
    • /
    • pp.1203-1211
    • /
    • 1998
  • 적외선 광온도계(IR optical thermometer)와 PID 온도조절기에 의해 소성온도와 시간을 정밀하게 조절할 수 있는 마이크로파 소성장치를 사용하여 BaTiO3 시편을 소성하였다. 또한 마이크로파 소성중에 광섬유 온도계(optical fiber thermoneter)로 시편의 내부온도를 측정하여 같은 조건에서의 일반소성에 의한 시편과 소성특성을 비교한 결과, 소성시간에 따른 빠른 입성장속도과 큰 결정립경을 가졌으며, 온도에 따른 유전성질의 변화는 20~16$0^{\circ}C$의 측정범위에서 같은 경향을 보였다.

  • PDF

하소온도와 소결조제가 $(Zn_{0.8}Mg_{0.2})TiO_3$계의 소결거동과 마이크로파 유전특성에 미치는 영향 (Effect of Calcination Temperature and Sintering Additives on the Sintering Behaviors and Microwave Dielectric Properties of $(Zn_{0.8}Mg_{0.2})TiO_3$)

  • 심우성;방재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.282-286
    • /
    • 2003
  • We investigated the effects of calcination temperature and sintering additives on the sintering behaviors and microwave dielectric properties of $(Zn_{0.8}Mg_{0.2})TiO_3$. Highly densified samples were obtained at the sintering temperatures below $1000^{\circ}C$ with additions of 0.45 wt.% $Bi_2O_3$ and 0.55 wt.% $V_2O_5$. From the examination of the existing phases and microstructures before and after sintering of $(Zn_{0.8}Mg_{0.2})TiO_3$ system calcined at the various temperatures ranging from $800^{\circ}C$ to $1000^{\circ}C$, it was found that high $Q{\times}f_o$ values were obtained when unreacted or second phases in calcined body were reduced. When calcined at $1000^{\circ}C$ and sintered at $900^{\circ}C$, it consists of hexagonal as a main phase with uniform microstructure and exhibits $Q{\times}f_o$ value of 42,000 GHz and dielectric constant of 22.

  • PDF

Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures

  • Cui, Liqi;Niu, Ruifeng;Wang, Weitian
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.181-185
    • /
    • 2022
  • In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z* -plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M*-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.

비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가 (Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder)

  • 김황희;김춘수;전지홍;박찬기
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.