Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.1.37

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics  

Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
Publication Information
Korean Journal of Materials Research / v.25, no.1, 2015 , pp. 37-42 More about this Journal
Abstract
The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.
Keywords
ZnO-$V_2O_5$-based ceramics; sintering; electrical and dielectric properties; varistors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. D. Mahan, J. Appl. Phys., 54(7), 3832 (1983).
2 M. Matsuoka, Jpn. J. Appl. Phys., 10(6), 736 (1971).   DOI
3 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65(4), 639 (1986).
4 T. K. Gupta, J. Am. Ceram. Soc., 73(7), 1817 (1990).   DOI
5 K. Mukae, Am. Ceram. Bull., 66(10), 1329 (1987).
6 K. Mukae, K. Tsuda, and S. Shiga, IEEE T. Power Deliver, 3(2), 591 (1988).   DOI   ScienceOn
7 K. Mukae, K. Tsuda, and I. Nagasawa, Jpn. J. Appl. Phys., 16, 1361 (1977).   DOI
8 C. -W. Nahm, Mater. Lett., 47(3), 182 (2001).   DOI   ScienceOn
9 J. -K. Tsai and T. -B. Wu, J. Appl. Phys., 76(8), 4817 (1994).   DOI   ScienceOn
10 J. -K. Tsai and T. -B. Wu, Mater. Lett., 26(3), 199 (1996).   DOI   ScienceOn
11 C. T. Kuo, C. S. Chen and I. -N. Lin, J. Am. Ceram. Soc., 81(11), 2949 (1998).   DOI
12 H. -H. Hng and K. M. Knowles, J. Am. Ceram. Soc., 83(10) 2455 (2000).   DOI
13 H. -H. Hng and P. L. Chan, Mater. Chem. Phys., 75(1-3), 61 (2002).   DOI   ScienceOn
14 H. -H. Hng and P. L. Chan, Ceram. Int., 30, 1647 (2004).   DOI   ScienceOn
15 C. -W. Nahm, J. Mater. Sci., 42(19), 8370 (2007).   DOI
16 C. -W. Nahm, Ceram. Int., 35(8), 3435 (2009).   DOI   ScienceOn
17 C. -W. Nahm, Ceram. Int., 36(3), 1109 (2010).   DOI   ScienceOn
18 C. -W. Nahm, J. Alloys Compd., 509(34), L314 (2011).   DOI   ScienceOn
19 C. -W. Nahm, J. Mater. Sci.: Mater. Electronic., 24(1), 27 (2013).   DOI
20 C. -W. Nahm, J. Mater. Sci.: Mater. Electronic., 24(1), 70 (2013).   DOI
21 M. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50(6), 4475 (1979).   DOI
22 C. -W. Nahm, Mater. Sci. Semicon. Process., 16(5), 1308 (2013).   DOI   ScienceOn
23 J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55(97-12), 109 (1972).   DOI