DOI QR코드

DOI QR Code

Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound

  • Jeong, Kwang-yong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Chul Hee (Division of Advanced Materials Engineering, Kongju National University) ;
  • Dharmaiah, Peyala (Division of Advanced Materials Engineering, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University)
  • Received : 2017.03.31
  • Accepted : 2017.04.20
  • Published : 2017.04.28

Abstract

We fabricate fine (<$20{\mu}m$) powders of $Bi_{0.5}Sb_{1.5}Te_3$ alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient ($217{\mu}V/K$) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<$20{\mu}m$) powders.

Keywords

References

  1. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. https://doi.org/10.1038/nmat2090
  2. P. Dharmaiah, H. S. Kim, K. H. Lee and S. J. Hong: Arch. Metall. Mater., 60 (2015) 1417. https://doi.org/10.1515/amm-2015-0144
  3. B. C. Sales, D. Mandrus and R. K. Williams: Science, 272 (1996) 1325. https://doi.org/10.1126/science.272.5266.1325
  4. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder: Science, 321 (2008) 554. https://doi.org/10.1126/science.1159725
  5. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis: Nature, 489 (2012) 414. https://doi.org/10.1038/nature11439
  6. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. Laforge: Science, 297 (2002) 2229. https://doi.org/10.1126/science.1072886
  7. K. C. Park, P. Dharmaiah, H. S. Kim and S. J. Hong: J. Alloys Compd., 692 (2017) 573. https://doi.org/10.1016/j.jallcom.2016.09.106
  8. Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher and G. J. Snyder: Adv. Energy Mater., 5 (2015) 1401391. https://doi.org/10.1002/aenm.201401391
  9. Z. J. Xu, L. P. Hu, P. J. Ying, X. B. Zhao and T. J. Zhu: Acta Mater., 84 (2015) 385. https://doi.org/10.1016/j.actamat.2014.10.062
  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634. https://doi.org/10.1126/science.1156446
  11. H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung, P. W. Li, S. W. Lee: Appl. Phys. Lett., 102 (2013) 101902. https://doi.org/10.1063/1.4794943
  12. C. Zhang, Z. Peng, Z. Li, L. Yu, K. A. Khor and Q. Xiong: Nano Energy, 15 (2015) 688. https://doi.org/10.1016/j.nanoen.2015.05.022
  13. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn: Nature, 413 (2001) 597. https://doi.org/10.1038/35098012
  14. E. B. Kim, P. Dharmaiah, D. W. Shin, K. H. Lee and S. J. Hong: J. Alloys Compd., 703 (2017) 614. https://doi.org/10.1016/j.jallcom.2017.01.340
  15. M. H. Bhuiyan, T. S. Kim, J. M. Koo and S. J. Hong: J. Alloys Compd., 509 (2011) 1722. https://doi.org/10.1016/j.jallcom.2010.10.021
  16. H. Li, H. Jing, Y. Han, G. Q. Lu and L. Xu: Intermetallics, 43 (2013) 16. https://doi.org/10.1016/j.intermet.2013.07.007
  17. Z. A. Munir, U. A. Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  18. P. Dharmaiah, H. S. Kim, C. H. Lee, S. J. Hong: J. Alloys Compd., 686 (2016) 1. https://doi.org/10.1016/j.jallcom.2016.05.340
  19. J. Li, Q. Tan, J. F. Li, D. W. Liu, F. Li, Z. Y. Li, M. Zou and K. Wang: Adv. Funct. Mater., 23 (2013) 4317. https://doi.org/10.1002/adfm.201300146
  20. S. N. Chizhevskaya and L. E. Shelimova: Inorg. Mater., 31 (1995) 1083.
  21. J. Jing, L. Chem, S. Bai and Q. Yao: J. Alloys Compd., 390 (2005) 208. https://doi.org/10.1016/j.jallcom.2004.07.056
  22. Y. Yu, B. Zhu, Z. Wu, Z. Huang, X. Y. Wang and F. Q. Zu: Intermetallics, 66 (2015) 40. https://doi.org/10.1016/j.intermet.2015.06.020