DOI QR코드

DOI QR Code

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics

  • Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
  • Received : 2014.10.10
  • Accepted : 2014.12.11
  • Published : 2015.01.27

Abstract

The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.

Keywords

References

  1. G. D. Mahan, J. Appl. Phys., 54(7), 3832 (1983).
  2. M. Matsuoka, Jpn. J. Appl. Phys., 10(6), 736 (1971). https://doi.org/10.1143/JJAP.10.736
  3. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65(4), 639 (1986).
  4. T. K. Gupta, J. Am. Ceram. Soc., 73(7), 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  5. K. Mukae, Am. Ceram. Bull., 66(10), 1329 (1987).
  6. K. Mukae, K. Tsuda, and S. Shiga, IEEE T. Power Deliver, 3(2), 591 (1988). https://doi.org/10.1109/61.4296
  7. K. Mukae, K. Tsuda, and I. Nagasawa, Jpn. J. Appl. Phys., 16, 1361 (1977). https://doi.org/10.1143/JJAP.16.1361
  8. C. -W. Nahm, Mater. Lett., 47(3), 182 (2001). https://doi.org/10.1016/S0167-577X(00)00262-7
  9. J. -K. Tsai and T. -B. Wu, J. Appl. Phys., 76(8), 4817 (1994). https://doi.org/10.1063/1.357254
  10. J. -K. Tsai and T. -B. Wu, Mater. Lett., 26(3), 199 (1996). https://doi.org/10.1016/0167-577X(95)00217-0
  11. C. T. Kuo, C. S. Chen and I. -N. Lin, J. Am. Ceram. Soc., 81(11), 2949 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02718.x
  12. H. -H. Hng and K. M. Knowles, J. Am. Ceram. Soc., 83(10) 2455 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01576.x
  13. H. -H. Hng and P. L. Chan, Mater. Chem. Phys., 75(1-3), 61 (2002). https://doi.org/10.1016/S0254-0584(02)00031-7
  14. H. -H. Hng and P. L. Chan, Ceram. Int., 30, 1647 (2004). https://doi.org/10.1016/j.ceramint.2003.12.162
  15. C. -W. Nahm, J. Mater. Sci., 42(19), 8370 (2007). https://doi.org/10.1007/s10853-007-1955-5
  16. C. -W. Nahm, Ceram. Int., 35(8), 3435 (2009). https://doi.org/10.1016/j.ceramint.2009.06.004
  17. C. -W. Nahm, Ceram. Int., 36(3), 1109 (2010). https://doi.org/10.1016/j.ceramint.2009.12.002
  18. C. -W. Nahm, J. Alloys Compd., 509(34), L314 (2011). https://doi.org/10.1016/j.jallcom.2011.06.065
  19. C. -W. Nahm, J. Mater. Sci.: Mater. Electronic., 24(1), 27 (2013). https://doi.org/10.1007/s10854-012-0770-1
  20. C. -W. Nahm, J. Mater. Sci.: Mater. Electronic., 24(1), 70 (2013). https://doi.org/10.1007/s10854-012-0853-z
  21. C. -W. Nahm, Mater. Sci. Semicon. Process., 16(5), 1308 (2013). https://doi.org/10.1016/j.mssp.2013.04.003
  22. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55(97-12), 109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  23. M. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50(6), 4475 (1979). https://doi.org/10.1063/1.326411