• Title/Summary/Keyword: Sintering density

Search Result 1,406, Processing Time 0.021 seconds

Effect of Partially Oxidized Ti Powder on Electrical Properties and Microstructures of $BaTiO_3$-based Ceramics ($BaTiO_3$계 세라믹스의 전기적 성질과 미세조직에 미치는 부분산화 Ti 분말 첨가의 영향)

  • Kim, Jun-Gyu;Jo, Won-Seung;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.671-676
    • /
    • 2000
  • $BaTiO_3$-based ceramics with partially oxidized Ti powders were prepared by sintering at $1350^{\circ}C$ for 1 h in v vacuum, and then heated in air. In this study, the effect of partially oxidized Ti powders on electrical properties and microstructures of $BaTiO_3$-based ceramics was investigated. It was found out that the semiconductive $BaTiO_3$-based ceramics beζame to show excellent PTCR (more than $10^5$) characteristic by adding 5~7 vol% of partially oxidized Ti powder. Also, it was found out that the sintered compact had extremely porous and fine-grained microstructure. The relative density and grain size of sintered compact with 5 vol% of partially oxidized Ti powders were 54% and $1.3\;{\mu\textrm{m}}$, respectively. The mechanism for the development of PTCR characteristic in $BaTiO_3$-based ceramics with partially oxidized Ti powders due to the adsorption of oxygen at grain boundaries, and could be explained, based on Heywang model.

  • PDF

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.

Synthesis of Ceramic Support for Immobilization of Microorganisms Using Fly Ash (석탄회를 이용한 미생물 고정화 세라믹 담체 제조)

  • Shin, Dae-Yong;Han, Sang-Mok;Choi, Shin-Geon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.857-862
    • /
    • 2002
  • Porous ceramic supports with immobilized microorganisms for the water purifier were synthesized by firing green compacts of mixed powder comprising of fly ash, bentonite and an additive of yeast powder at 800∼1,000$^{\circ}C$ for 1h and the pore and mechanical properties of specimens were investigated. The compressive strength was increased in FB (Fly Ash + Bentonite) specimens while pore properties was decreased with increasing the bentonite content and sintering temperature. The compressive strength, bulk density, apparent density, porosity, mean pore size, pore volume and specific surface area of FB specimens at 800∼1,000$^{\circ}C$ were 89.6∼128.9 kgf/$cm^2$, 1.25∼1.43, 1.61∼1.78, 27.2∼62.2%, 7.9∼25.6 ${\mu}m$, 8.9∼$22.2{\times}10^{-5}\;cm^3/g$ and 35.2∼134.3 $m^2/g$, respectively. The pore properties of FBY (FB+yeast powder) specimens were superior to that of FB specimens, however compressive strength was decreased with increasing yeast powder content. The overall properties of 9F1B1Y (9F1B+10% of yeast powder) specimens at 900$^{\circ}C$ for 1 h were 98.7 kgf/$cm^2$, 1.20, 1.67, 68.1%, 48.9 ${\mu}m$, $29.5{\times}10^{-5}\;cm^3/g$ and 152.2 $m^2/g$, respectively. In this study, it was revealed that 9F1B1Y specimen demonstrated better S. saprophyticus adherence properties n their surface pores. Consequently, the microorganisms immobilized on porous ceramic supports showed better water purifying performance with many pores and adequate strength.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.