• Title/Summary/Keyword: Sintering Atmosphere

Search Result 439, Processing Time 0.028 seconds

Effect of the Size and Carbides Dispersion in the Sintering and Hardness of Samples of Stainless Steel Reinforced with NbC And TaC

  • Da Silva Soares, Sergio R.;Gomes, Uilame Umbelino;Furukava, Marciano;De Souza, Carlson Pereira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.552-553
    • /
    • 2006
  • The present study investigates the behavior of the sintering and hardness of stainless steel samples reinforced with NbC and TaC. Matrixes of pure stainless steel were compacted with addition of up to 3% wt NbC or TaC in a cylindrical die of steel $(\phi\;=\;5,0\;mm)$ at 700 MPa and sintered in an electrical resistance furnace under argon atmosphere. The sintered samples were characterized by density and hardness measurement, optical microscopy and scanning electron microscopy (SEM). The preliminary results show that the size and distribution of carbides influence in the sintering and hardness of the sintered samples.

  • PDF

Sintering Behavior of Ball Milled ${MoSi}_{2}$ Powders (볼밀링한 ${MoSi}_{2}$ 분말의 소결거동)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.167-173
    • /
    • 1996
  • The effect of ball milling on the pressureless sintering of MoSi$_2$ was investigated. Ball milling was conducted at 70 rpm for 72 hours using different balls and vessels: one used tungsten carbide balls in a plastic vessel(referred as B-powder) and the other stainless steel ball in a stainless steel vessel(referred as C- powder). The powder was compacted with 173MPa and subsequently sintered at the temperature range of 1150 $^{\circ}C$ and 1450 $^{\circ}C$ in H$_2$, atmosphere. Sintered density was measured and scanning electron micrograph was observed. Over 90% of the theoretical density was attained at 1250 $^{\circ}C$ within 10 minutes for C-powders, while the similar densification required a sintering temperature of 1450 $^{\circ}C$ for B-powders. Such a difference in sinterability between B and C-powders was discussed in terms of the effect of particle size reduction and activated sintering caused by Ni and/or Fe introduced during ball milling.

  • PDF

Study on sintering process of woodceramics from the cashew nutshell waste

  • Kieu, Do Trung Kien;Phan, DinhTuan;Okabe, Toshihiro;Do, Quang Minh;Tran, Van Khai
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.472-478
    • /
    • 2018
  • In this study, the sintering mechanism of woodceramics (WCs) from cashew nut shell waste (CNSW) was studied by analyzing chemical reactions and structural changes during the sintering process of of CNSW powder, liquefied wood and green bodies of WCs at $900^{\circ}C$ for 60 minutes in the $CO_2$ atmosphere. The chemical and structural properties of the products were investigated by X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM). The results showed that the decomposition reactions of liquefied wood and CNSW occurred simultaneously to form the hard carbon and the soft carbon at high temperature. The sintering mechanism of WCs has been presented.

The Influence of Sintering Atmosphere on the Reduction Behaviour of Refractory Bricks and the Basic Properties of $UO_{2}$ Pellet

  • Lee, Seung-Jae;Kim, Kyu-Tae;Chung, Bum-Jin
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.279-285
    • /
    • 1998
  • The $UO_2$ pellets are usually sintered under hydrogen gas atmosphere. Hydrogen gas may cause unexpected early failure of the refractory bricks in the sintering furnace. In this work, nitrogen was mixed with hydrogen to investigate the effect of nitrogen gas on a failure machanism of the refractory bricks and on the microstructure of the $UO_2$ pellet. The hydrogen-nitrogen mixed gas experiments show that the larger nitrogen the mixed gas contains, the less the refractory materials are reduced by hydrogen. The weight loss measurements at $1400^{\circ}C$ for fire clay and chamotte refractories containing high content of $SiO_2$ indicate that the weight loss rate for the mixed gas is about half of that for the hydrogen gas. Based on the thermochemical analyses, it is proposed that the weight loss is caused by hydrogen-induced reduction of free $SiO_2$ and/or $SiO_2$ bonded to $Al_2O_3$ in the fire clay and chamotte refractories. However, the retardation of the hydrogen-induced $SiO_2$ reduction rate under the mixed gas atmosphere may be due to the reduction of the surface reaction rate between hydrogen gas and refractory materials in proportion to volume fraction of nitrogen gas in the mixed gas. On the other hand, the mixed gas experiments show that the test data for $UO_2$ pellet still meet the related specification values, even if there exists a slight difference in the pellet microstructural parameters between the cases of the mixed gas and the hydrogen gas.

  • PDF

Influence of Nitrogen/Hydrogen Atmospheres on Sintered Properties of P/M Components

  • Philips, Thomas;Koh, Kyung-Sug
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.818-819
    • /
    • 2006
  • The effect of individual gas constituents in a sintering atmosphere is examined to optimize the sintered properties of Iron-Carbon P/M components. The influence of sintered properties is reviewed as a function of hydrogen percentages and dew point in the sintering zone. Microstructures, porosity, pore morphology and dimensional changes are the subject of this review. The effects of CO containing atmospheres are compared against the non CO atmospheres in terms of hardness, carbon control and dimensional changes.

  • PDF

Evaluation of Ni-YSZ Anode fabricated by Spark Plasma Sintering for SOFC Application (방전플라즈마 소결공법에 의해 제작된 SOFC용 Ni-YSZ Anode의 특성평가)

  • Chang, Se-Hun;Choi, Jung-Chul;Choi, Se-Weon;Kim, Ho-Sung;Oh, Ik-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.405-410
    • /
    • 2008
  • SOFC (Solid Oxide Fuel Cell) Ni-YSZ anode was fabricated by the spark plasma sintering (SPS) process and its microstructure and electrical properties were investigated in this study. The spark plasma sintering process was carried out at $800{\sim}1000^{\circ}C$ for holding time of 5 min under 40 MPa. To fabricate Ni-YSZ anode, the SPS processed specimens were reduced at $800^{\circ}C$ under $H_2$ atmosphere. The reduced specimens showed relative density of $48.4{\sim}64.8%$ according to sintering temperature. And also, the electrical conductivity of reduced specimens after sintering at 900 and $1000^{\circ}C$ showed $480{\sim}600$ (S/cm) values at the measuring range of $600{\sim}900^{\circ}C$.

Densification Behavior of Rhenium Alloy using Master Sintering Curve

  • Park, Dong Yong;Oh, Yong Jun;Kwon, Young Sam;Lim, Seong Taek;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in $H_2$ atmosphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetrically treated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforward approach to describe the densification behavior during sintering. The densification behaviors for each material were analyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC with a minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as well as provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed that the W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.

Observation of Densification Behavior during the Sintering of Ni-added $MoSi_2$ Powder Compacts (Ni을 첨가한 $MoSi_2$분말성형체의 소결시 치밀화거동의 관찰)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.298-303
    • /
    • 1997
  • The activated sintering behavior of $MoSi_2$ powder compacts with addition of 0.5 and 1.0 wt.%Ni during the sintering under As atmosphere was studied. The shrinkage was measured and the microstructures were observed by SEM (scanning electron microscopy) and BEI (backscattered electron image) along with the phase analysis by EDS during heating up to 155$0^{\circ}C$ and holding for various time at 155$0^{\circ}C$. The most of shrinkage occurred upon heating and 92% of theoretical density was attained after sintering for 1 hr at 155$0^{\circ}C$. However, little shrinkage ensued even for prolonged sintering over 1 hr at 155$0^{\circ}C$. A liquid film formed at about 135$0^{\circ}C$ along necks and grain boundaries. The polyhedral grain structure composed of $(Mo,Ni)_5Si_3$and $Ni_2Si$ across the $MoSi_2$ grain boundary developed at 155$0^{\circ}C$. It was concluded that the activated sintering of $MoSi_2$ powder by Ni led to the diffusion of Si into Ni decreasing the liquidus temperature and the enhanced diffusion of Mo and Si through such a liquid phase and/or interboundary of $(Mo,Ni)_5Si_3$.

  • PDF

Effect of Oxygen Content in the Tungsten Powder Fabricated by Electrical Explosion of Wire Method on the Behavior of Spark-Plasma Sintering (전기선폭발법으로 제조된 텅스텐 분말의 산소 조성이 방전플라즈마소결 거동에 미치는 영향)

  • Kim, Cheol-Hee;Lee, Seong;Kim, Byung-Kee;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2014
  • Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at $400^{\circ}C$ for 2 hour and at $500^{\circ}C$ for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at $1200-1600^{\circ}C$ for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of $1600^{\circ}C$ for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of $95.85kJ/mol^{-1}$ was obtained, which is remarkably smaller than the reported ones of $380{\sim}460kJ/mol^{-1}$ for pressureless sintering of micron-scale tungsten powders.

Spectral Response of the n-CdS/n-CdTe/p-CdTe Solar Cells (n-Cds/n-CdTe/p-CdTe 태양전지의 분광반응도)

  • Im, H.B.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.248-250
    • /
    • 1987
  • Transparent CdS films with low electrical restivity on glass substrates were prepared by coating a CdS slurry which contained 10 wt.% $CdCl_2$, and sintering in a nitrogen atmosphere at $600^{\circ}C$ for 2hr. All-polycrystalline CdS/CdTe solar cells were fabricated by coating CdTe slurries, which contained 1.0 or 4.5 wt.% $CdCl_2$, on the sintered CdS films and sintering at $700^{\circ}C$ for various periods of sintering. The spectral responses of the sintered CdS/CdTe solar cells were measured and compared with theoretically calculated quantum efficiency. The spectral responses of the sintered CdS/CdTe solar cells in the short-wavelength region decreases with-increasing sintering time. The poor response in this region is attributed to the existence of the Cd-S-Te solid solution in the compositional junction. The decrease in the maximum response in the long-wavelength region as the sintering exceeds certain time appears to be caused by the increase in the depth of the buried homo junction and by the increase in the series resistance. The $CdCl_2$ in the CdTe layer during sintering enchances the interdiffusion of S, Te or donor impurities across the metallurgical Junction causing the formation of deeper n-p junction in the CdTe layer.

  • PDF