• Title/Summary/Keyword: Sintered AlN

Search Result 118, Processing Time 0.023 seconds

Experimental Investigations on Micro End-milling Cutting Characteristics Comparison and Tool Wear Behavior of AlN-hBN Composites Sintered by Hot-pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 절삭특성 비교와 공구마모에 관한 실험적 연구)

  • Beck, Si-Young;Shin, Bong-Cheol;Cho, Myeong-Woo;Cho, Won-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-111
    • /
    • 2008
  • The objective of this study is to evaluate micro end-milling characteristics and tool wear behavior of AlN-hBN composites. First, AlN based composites with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Vickers hardness and flexural strength of the prepared composite specimens were measured and compared according to the vol% of hBN variations. Then, cutting force variations were measured and analyzed using a tool dynamometer during the micro end-milling experiments; and machined surface shapes and roughness were investigated using a 3D non-contact type surface profiler. After micro end-milling, worn tools were investigated using a tool microscope and SEM images. From the experimental results, it can be observed that the cutting forces decreased, and surface qualities were improved with increasing hBN contents. At low content of hBN, tool chipping was observed; and tool wear rate decreased with increasing hBN contents. The results of this study insist that proper machining conditions, including tool wear behavior investigation, should be determined for the micro end-milling of AlN-hBN composites for its further application.

The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride (복산화물에 의한 질화규소 세라믹스의 제조와 그 기계적 특성)

  • Noh, Sang-Hoon;Kim, Bu-Ahn;Jeong, Hae-Yong;Yoon, Han-Ki
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750, $1800^{\circ}C$ for 2 hours. The Process was fulfilled under different process pressures of 30, 45MPa respectively. Mechanical properties (density, strength, hardness, fracture toughness) were investigated as a function of $Y_3Al_5O_{12}$ contents in $Si_3N_4$. $Si_3N_4-Y_3Al_5O_{12}$ ceramics showed similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was higher than $Si_3N_4-Y_2O_3-Al_2O_3$ceramics considerably.

  • PDF

The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride ($Y_3Al_5O_{12}$ 첨가가 질화규소 세라믹스의 제조 및 그 기계적 특성에 미치는 영향)

  • Noh, Sang-Hoon;Moon, Chang-Kwon;Jeong, Hae-Yong;Seo, Won-Chan;Yoon, Han-Ki;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.95-100
    • /
    • 2007
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as a sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, and 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750 and $1800^{\circ}C$ for 2 h. The process was performed under different process pressures of 30 and 45 MPa. Mechanical properties (density, strength, hardness, and fracture toughness) were investigated as a function of the $Y_3Al_5O_{12}$ content in $Si_3N_4$. $Si_3N_4\;-Y_3Al_5O_{12}$ ceramics showing similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was considerably higher than that of $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics.

Effect of Additives of Sintering and Mechanical Properties of $Si_3 N_4$ Bonded SiC ($Si_3 N_4$ 결합 SiC의 소결과 기계적 특성에 미치는 첨가제의 영향)

  • Baik, Yong-Hyuck;Shin, Jong-Yoon;Jung, Jong-In;Han, Chang
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.511-516
    • /
    • 1992
  • In this study, SiC powder and Si powder were used as the raw materials. Mixture was prepared with addition of Al2O3 and Fe2O3 at 0.1~0.5wt% respectively. After this step, the mixture was pressed and nitrided for 30 hrs at 140$0^{\circ}C$ under NH3-N2 atmosphere. Mechanical properties of sintered specimens were investigated from measurement of porosity, bulk density and three point bending test. nitration reaction extent was observed at the change of mass before and after reaction, and the microstructure and the change of $\alpha$-Si3N4 and $\beta$-Si3N4 were observed by XRD and SEM. In the current work, the results are as follows 1. When Fe2O3 added, the nitridation increased with the content of Fe2O3, and the bending strength was increased from 0.1 wt% to 0.3 wt%, and decreased to 0.5 wt%. 2. When Al2O3 added, the nitridation and the bending strength increased little by little with the content of Al2O3 3. The bending strength of the specimen added with Fe2O3 were higher than that with Al2O3. Because the specimens contained Fe2O3 had much more the whisker type crystal of Si3N4 contributing to strength than contained Al2O3.

  • PDF

Effects of Co-Ti Addition on the Sintering Characteristics of (Ti1-xAlx)N Ntride Powder ((Ti1-xAlx)N계 질화물의 소결특성에 미치는 Co, Co-Ti 금속결합제의 영향)

  • Lee, Young-Ki;Sohn, Young-Un
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.177-185
    • /
    • 1998
  • The purpose of this research is to investigate the effects of Co, Co-Ti addition on the sintering characteristic of $(Ti_{1-x}Alx)N$ material synthesized by the direct nitriding method for a application as a cermet material. The observed shrinkage rates of $(Ti_{1-x}Alx)N$ pellets increase with the additive (Co, Co-Ti) content, temperature and time, and also the pellets with the same additive content exhibit the shrinkage behavior that depends on the Ti/Al ratio. However, although the shrinkage rates in this study is the mast higher (36%), the density of the sintered $(Ti_{1-x}Alx)N$ pellet is below 80% density in theory because of the partial segregation and the dense band defect of AlCo compound. Consequentely, it is considered that Co was not effective as a binder material because the wettability of liquid Co metal on $(Ti_{1-x}Alx)N$ materials is poor, In $(Ti_{1-x}Alx)N$ with Ti-Co additive, the stoichiometric TiN is transformed by the under-stoichiometric TiNx(x<1.0) during sintering, leading to the good properties such as hardnees and hot oxidation.

  • PDF

Mechanical Properties of the Pressureless Sintered Si3N4-TiN Ceramic Composities (상압소결 Si3N4-TiN 복합재료의 기계적성질)

  • 송진수;손용배;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.409-415
    • /
    • 1989
  • Si3N4-TiN electro-conductive ceramic composites with 7wt% Al2O3+3wt% Y2O3 or 5wt% MgO as sintering aids were fabricated by pressureless sintering at 1,80$0^{\circ}C$ for 1h. The 3pt. flexural strength, KIC and Vickers hardness were measrued in order to investigate the effects of TiN on the mechanical properties. Also oxidation behavior was observed by measuring the weight gain after exposure to air at 1,10$0^{\circ}C$ for 100h. the reaction products between Si3N4 and TiN was not detected by XRD and EDS. Mechanical properties of the composites were not influenced by the addition of TiN less than 30vol%, but oxidation resistance of the composites was rapidly decreased with the amount of added TiN.

  • PDF

Homogeneous Mixing of Si3N4 with Sintering Additives by Coprecipitation Method (질화규소의 소결첨가제의 공침법에 의한 균일혼합)

  • 김지순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.829-837
    • /
    • 1993
  • Chemically and geometrically homogeneous mixing of Si3N4 powders with sintering additives(YAG, 3Y2O3$.$5Al2O3) was attempted via coprecipitation method. X-ray dot maps for the additive elements(Al and Y) showed that the additives are evenly distributed in the powder mixture prepared by coprecipitation method(CP). TEM observation of the coprecipittion-treated Si3N4 powders revealed that they are covered with extremely fine crystallites of additive. The shift in isoelectric point(IEP) of Si3N4 powders from pH 6.7 to pH 7.9 after coprecipitation mixing gave another evidence for coating of Si3N4 powders with YAG additives. SIMS analysis for composition on the surface and in the matrix of mixed powders showed that the YAG additives are highly enriched on the surface of coprecipitation-treated Si3N4 powders. Especially when a small amount of additive was used, the effect of homogeneous additive distribution on densification was preceptible: After pressureless-sintering of powder compacts containing 5 mol% YAG at 1800$^{\circ}C$ for 0.5h, a sintered density of 96.5% theoretical was obtained from the specimens prepared bycoprecipitation in comparison with 93.8% from the mechanically-mixed one.

  • PDF

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

MgO doping and annealing effect on high temperature electrical resistivity of AlN-Y2O3 ceramics (MgO doping 및 annealing이 AlN-Y2O3 세라믹스의 고온전기저항에 미치는 영향)

  • Yu, Dongsu;Lee, Sung-Min;Hwang, Kwang-Taek;Kim, Jong-Young;Shim, Wooyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.235-242
    • /
    • 2018
  • High temperature electrical conductivity of Aluminum Nitride (AlN) ceramics sintered with $Y_2O_3$ as a sintering aid has been investigated with respect to various sintering conditions and MgO-dopant. When magnesium oxide is added as a dopant, liquid glass-film and crystalline phases such as spinel, perovskite are formed as second phases, which affects their electrical properties. According to high temperature impedance analysis, MgO doping leads to reduction of activation energy and electrical resistivity due to AlN grains. On the other hand, the activation energy and electrical resistivity due to grain boundary were increased by MgO doping. This is a result of the formation of liquid glass film in the grain boundary, which contains Mg ions, or the elevation of schottky barrier due to the precipitation of Mg in the grain boundary. For the annealed sample of MgO doped AlN, the electrical resistivity and activation energy were increased further compared to MgO doped AlN, which results from diffusion of Mg in the grains from grain boundary as shown in the microstructure.

Synthesis and properties of $Al_2O_3-SiC$ Composites from Alkoxides III. Effect of Composite Powder Type on the Sintering Characteristics and Properties of $Al_2O_3-SiC$ Comopsites (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 III. 복합분말의 형태에 따른 $Al_2O_3-SiC$ 복합재료의 소결 특성 및 물성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.316-324
    • /
    • 1993
  • Three types of dispersed, coated and mechanically mixed SiC reinforced Al2O3 composite powders were used to investigate the effect of composite powder type on sintering characteristics and properties of Al2O3-SiC composites. Sinterability of coated type composite powders was superior to that of other composite powders when they were pressureless sintered at 1500~1$700^{\circ}C$ for 2h in Ar atmosphere. However, sinterabilities (>98% TD) of each type of composite powders were similar when they were hot pressed at 180$0^{\circ}C$ for 1h under 30MPa in N2 atmosphere. SiC powders were randomly distributed in the specimen prepared from dispersed type composite powders, whereas homogeneously distributed for coated type specimens. It was found that SiC powders inhibited the grain growth of Al2O3, and fracture toughness was increased by the increment of crack growth resistance due to residual stress by secondary SiC particles within Al2O3 grains.

  • PDF