• Title/Summary/Keyword: Sink index

Search Result 38, Processing Time 0.025 seconds

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

The Impact of Air Temperature During the Growing Season on NEE of the Apple Orchard (사과 생육기의 기온이 사과원의 NEE에 미치는 영향)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1211-1215
    • /
    • 2012
  • Terrestrial ecosystem are a strong sink of carbon. Forest ecosystem, one of them, has been expected to play an important role in climate changing process by absorbing atmospheric carbon dioxide. On the other hand, agricultural ecosystem that consists mainly of annual crops is regarded as poor contributor to carbon accumulation, because its production (carbon hydrate) is decomposed into carbon at a short period, which is emitted to the atmosphere. However, it is thought that fruit tree plays a great role in decreasing atmospheric carbon dioxide concentration, same as forest. Net ecosystem exchange of $CO_2$ (NEE) was measured to estimate carbon fixation capacity using an eddy covariance (EC) system method in 2 years from 2005 to 2006 at an apple orchard in Uiseong, Gyeongbuk. Average air temperature values were higher in 2006 than in 2005 during the dormant season, and lower by about $5^{\circ}C$ over the growing season causing visible cold injuries. Accordingly, we investigated long-term exchange of carbon to determine how much difference of carbon fixation capacity was shown between 2006 and 2005 in terms of environmental and plant variables such as NEE, leaf area index (LAI), and Albedo. NEE was $4.8Mg\;C\;ha^{-1}yr^{-1}$ in 2005 and $4.7Mg\;C\;ha^{-1}yr^{-1}$ in 2006, respectively. Low temperature after July in 2006 decreased LAI values faster than those in 2005. Meanwhile, Albedo values were higher after July in 2006 than in 2005. These results show that the low temperature after July in 2006 apparently affected apple growth.

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace (대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1459-1464
    • /
    • 2009
  • Recently demand for large-capacity aluminum heat sinks has been increased as market for high power electricity expands and high-performance electronic products develop. While the brazed heat sinks are in particular preferred, it is almost impossible to manufacture them with an atmospheric continuous furnace due to insufficient heating rate and various thickness of the parent metals. Therefore, a new index batch furnace is developed and the process variables are optimized. Then, brazing efficiency and tensile stress are obtained for brazed parts of the heat sinks. Finally experiment as well as numerical analysis has been performed to compare thermal efficiency of the brazed heat sinks with that of the silicone-bonded heat sinks.

Genetic Variation of Flower Production in Breeding Seedling Seed Orchards of Quercus acuta and Q. glauca

  • Jeon, Koeun;Ro, Hee Seung;Kim, Ye-Ji;Gu, Da-Eun;Park, Ji-Min;Ryu, Sungryul;Kang, Kyu-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.102-109
    • /
    • 2022
  • This study was conducted to test the significant difference of fertility variation among families and to select superior families for acorn production in the breeding seedling seed orchards (BSSOs) of Quercus acuta and Quercus glauca. The seed orchards were located in Jeju island and established by seedlings raised from selected parents for genetic testing in 2006. In the spring of 2021, the numbers of female and male flower were counted from 5 to 10 individuals per family in the BSSOs. To test statistical significance of which parameter is not satisfied through the normality test, we used a nonparametric analysis. Correlation analysis was performed to quantify the association between female and male flower production. As the results, the significant difference of flower production among families was found in both seed orchards. The averages of female flower production were 65.3 and 181.9 in Q. acuta and Q. glauca. The positive Spearman's rank correlation was existed between male and female flower production. Broad-sense heritability on female and male flower production were 0.191 and 0.147 in Q. acuta, and 0.285 and 0.068 in Q. glauca, respectively. Sexual asymmetry (e.g., maleness index) between female and male, and contribution variation among families (e.g., parental balance) were analyzed to find reasonable alternatives in the management of seed orchards. Effective population size of seed crops was predicted as a concept of status number. Loss of gene diversity (accumulation of group coancestry) would not be alarming in the BSSOs. Our results would be helpful to select breeding materials for establishing new seed orchards and to supply genetically improved seeds of evergreen oaks, which is one of the backbones of the strategy of carbon sink in the 2050 Carbon Neutrality of Korea Forest Service.

Habitat Selection and Management of the Leopard Cat(Prionailurus bengalensis) in a Rural Area of Korea (농촌지역 삵(Prionailurus bengalensis)의 서식지 선택과 관리방안)

  • Choi, Tae-Young;Kwon, Hyuk-Soo;Woo, Dong-Gul;Park, Chong-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.322-332
    • /
    • 2012
  • The objectives of this paper were to investigate home range, habitat selection, and threat factors of leopard cats (Prionailurus bengalensis) living in rural area of Korea. The results based on radio tracking of three leopard cats (two males and one female) can be summarized as follows. First, the average home range of leopard cats were $2.64{\pm}1.99km^2$ (Kernel 95) and $3.69{\pm}1.34km^2$ (MCP 100), and the average size of core areas was $0.64{\pm}0.47km^2$ (Kernel 50). The home range of a male leopard cat that radio-tracked in winter was the largest ($5.19km^2$, MCP 100). Second, the Johnson's habitat selection model based on the Jacobs index showed that leopard cats preferred meadows and paddy fields avoiding forest covers at the second level, whereas they preferred meadows adjacent to streams and avoided paddy fields at the third level. Finally, roadkill could be prime threat factor for the cat population. Therefore, habitats dominated by paddy fields, stream corridors with paved roads, and human settlements with insufficient forest patches could threaten the long-term viability of leopard cat populations. Thus the habitat managements for the leopard cat conservation should focus on the prevention of road-kill and the installation of wildlife passages in rural highways adjacent to stream corridors.

Formation of Alunite and Schwertmannite under Oxidized Condition and Its Implication for Environmental Geochemistry at Dalseong mine (산화환경하에서 명반석, 슈베르트마나이트의 형성특징과 환경지구화학적 의미: 달성광산)

  • 추창오;이진국;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Sulfates such as alunite and schwertmannite formed under oxidation condition play a important role in geochemical processes taken place at waste dumps and a creek from Dalseong mine, Daegu. Water chemistry shows pH decreases from upstream toward downstream creek, mainly due to formation of schwertmannite that is the most abundant phase along the creek. The removal of Al from the creek is preferentially attributed to formation of Al-bearing minerals and Al-sulphates. Among them, alunite is the most important Al-sink phase that occurs at higher pH than $pK_1$, Al hydrolysis constant. With high saturation index, alunite formed at the creek has a spherical form, commonly associated with schwertmannite. Secondary minerals formed on the surface of altered or weathered surfaces of heavy metals from the wasted dump that underwent severe oxidation, where alunite has characteristic habits which are spheric, radiating, and botrytis-like aggregates. Natroalunite occurs in association with alunite, or as mixtures of both of them. Because the pH decreases with distance due to formation of schwertmannite, although total contents of dissolved ions slowly lessen at least in the AMD, it is expected that the minerals precipitated at the creek can be exposed to subsequent dissolution, which may induce possible environmental problems.

A study on image segmentation for depth map generation (깊이정보 생성을 위한 영상 분할에 관한 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.707-716
    • /
    • 2017
  • The advances in image display devices necessitate display images suitable for the user's purpose. The display devices should be able to provide object-based image information when a depthmap is required. In this paper, we represent the algorithm using a histogram-based image segmentation method for depthmap generation. In the conventional K-means clustering algorithm, the number of centroids is parameterized, so existing K-means algorithms cannot adaptively determine the number of clusters. Further, the problem of K-means algorithm tends to sink into the local minima, which causes over-segmentation. On the other hand, the proposed algorithm is adaptively able to select centroids and can stand on the basis of the histogram-based algorithm considering the amount of computational complexity. It is designed to show object-based results by preventing the existing algorithm from falling into the local minimum point. Finally, we remove the over-segmentation components through connected-component labeling algorithm. The results of proposed algorithm show object-based results and better segmentation results of 0.017 and 0.051, compared to the benchmark method in terms of Probabilistic Rand Index(PRI) and Segmentation Covering(SC), respectively.

Study on the Sediment Quality in Bottom Water (I) (수 저층의 저질 조사 (I) - 저질 조사의 중요성과 분석에 관하여 -)

  • Kim, Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.93-102
    • /
    • 2007
  • Particle materials sink in bottom and dissolved inorganic substances release from sediment and many kinds of materials continuously exchange in sediment and water column as well as transfer and transformation in sediment. The study of sediment quality means the state of sediment pollution relation of the water quality, sediment biota, materials fluxes between sediment and water column, transformation of materials in sediment is being important in recent. The state of sediment quality imply that the history of water pollution for long time, because the sediment quality does not change temporally. The sediment quality of bottom water can be used as a good indicator of pollution at present and in future. The major index of sediment qualities are the content of nutrients and hazard materials such as metals, Ignition Loss (IL), Total Sulfur (TS), Oxidation Reduction Potential (ORP), sediment COD, color, odor and the release of nutrients from sediment. However, there are some arguments between researchers about compare to estimation of sediment quality and sampling and analysis of sediment. In this study, I will introduce the method of sediment sampling, analyzing and estimating of the sediment pollution.

  • PDF

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.