• Title/Summary/Keyword: Singular Value

Search Result 564, Processing Time 0.037 seconds

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

Determination of the Number of Multiple Sinusoids by a Singular Value Approach (특이값 접근방법에 의한 다단 정현파 수의 결정에 관한 연구)

  • 안태천;류창선;이상재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.868-874
    • /
    • 1990
  • A singular value approach is presented in order to determine the number of multiple sinusoids from the finite noisy data. Simulations are conducted for Akaike's information criterion (AIC), Rissanen's shortest data description (MDL) and a singular value approach, for various examples with different SNR's and methods of estimating frequencies. And then the performances are compared. Simulation results that the singular value approach is superior to AIC and MDL for FBLP, HOYW and covariance matrix based methods are investigated. The approach with contribute to the frequency estimation of multiple sinusoids from the finite noisy data. Furthermore, this will be applied to the DSPs of communication and bio-medical engineering.

  • PDF

Robust pole placement condition using generalized singular value (일반화된 특이치를 사용한 강인한 극배치 조건)

  • Lee, Jun-Hwa;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • In this paper, generalized singular value is defined. Using the generalized singular value, robust stability conditions and robust pole placement conditions of structured uncertain systems with star shaped uncertainties are derived. Especially, norm bounded and polytopic uncertainty regions are considered as star shaped uncertainty regions. Linear matrix inequality problems are proposed in order to compute the upper bound of the generalized singular value. The proposed linear matrix inequality problems can be solved by using the convex optimization method.

  • PDF

SMOOTH SINGULAR VALUE THRESHOLDING ALGORITHM FOR LOW-RANK MATRIX COMPLETION PROBLEM

  • Geunseop Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.427-444
    • /
    • 2024
  • The matrix completion problem is to predict missing entries of a data matrix using the low-rank approximation of the observed entries. Typical approaches to matrix completion problem often rely on thresholding the singular values of the data matrix. However, these approaches have some limitations. In particular, a discontinuity is present near the thresholding value, and the thresholding value must be manually selected. To overcome these difficulties, we propose a shrinkage and thresholding function that smoothly thresholds the singular values to obtain more accurate and robust estimation of the data matrix. Furthermore, the proposed function is differentiable so that the thresholding values can be adaptively calculated during the iterations using Stein unbiased risk estimate. The experimental results demonstrate that the proposed algorithm yields a more accurate estimation with a faster execution than other matrix completion algorithms in image inpainting problems.

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF

ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices

  • Ding, Xiucai;Chen, Xianyi;Zou, Mengling;Zhang, Guangxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2634-2648
    • /
    • 2020
  • In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is proposed to estimate the signal matrix when only one data matrix is observed and there is high dimensional white noise, in which we assume that the signal matrix is low-rank and has sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a structured matrix since the non-zero entries are confined on some small blocks. The proposed algorithm estimates the singular values and vectors separable by exploring the structure of singular vectors, in which the recent developments in Random Matrix Theory known as anisotropic Marchenko-Pastur law are used. And then we prove that when the signal is strong in the sense that the signal to noise ratio is above some threshold, our estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our estimator is adaptive to the data set and does not require the variance of the noise to be known or estimated. Numerical simulations indicate that ASSVD still works well when the signal matrix is not very sparse.

Block Based Blind & Secure Gray Image Watermarking Technique Based on Discrete Wavelet Transform and Singular Value Decomposition

  • Imran, Muhammad;Harvey, Bruce A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.883-900
    • /
    • 2017
  • In this paper block based blind secure gray image watermarking scheme based on discrete wavelet transform and singular value decomposition is proposed. In devising the proposed scheme, security is given high importance along with other two requirements: robustness and imperceptibility. The use of discrete wavelet transform not only improves robustness but the selection of bands with high tolerance towards noise caused an improvement in terms of imperceptibility. The robustness further improved due to the involvement of singular vectors along with singular values in watermark embedding and extraction process. Finally, to achieve security, the selected DWT band is decomposed into smaller blocks and random blocks are chosen for modification. Furthermore, the elements of left and right singular vectors of selected blocks are chosen based on their dependence upon each other for watermark embedding. Various experiments using different images as host and watermark were conducted to examine and validate the proposed technique. Additionally, the proposed technique is tested against various attacks like compression, affine transformation, cropping, translation, X shearing, scaling, Y shearing, filtering, blurring, different kinds of noises, histogram equalization, rotation, etc. Lastly, the proposed technique is compared with state-of-the-art watermarking techniques and their comparison shows significant improvement of proposed scheme over existing techniques.

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF

Histogram-Based Singular Value Decomposition for Object Identification and Tracking (객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해)

  • Ye-yeon Kang;Jeong-Min Park;HoonJoon Kouh;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.29-35
    • /
    • 2023
  • CCTV is used for various purposes such as crime prevention, public safety reinforcement, and traffic management. However, as the range and resolution of the camera improve, there is a risk of exposing personal information in the video. Therefore, there is a need for new technologies that can identify individuals while protecting personal information in images. In this paper, we propose histogram-based singular value decomposition for object identification and tracking. The proposed method distinguishes different objects present in the image using color information of the object. For object recognition, YOLO and DeepSORT are used to detect and extract people present in the image. Color values are extracted with a black-and-white histogram using location information of the detected person. Singular value decomposition is used to extract and use only meaningful information among the extracted color values. When using singular value decomposition, the accuracy of object color extraction is increased by using the average of the upper singular value in the result. Color information extracted using singular value decomposition is compared with colors present in other images, and the same person present in different images is detected. Euclidean distance is used for color information comparison, and Top-N is used for accuracy evaluation. As a result of the evaluation, when detecting the same person using a black-and-white histogram and singular value decomposition, it recorded a maximum of 100% to a minimum of 74%.