• Title/Summary/Keyword: Single-to-Differential

Search Result 642, Processing Time 0.025 seconds

Strategies for Operation of Single and Multiple Shake Tables

  • Laplace Patrick N.;Thoen Bradford K.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.571-578
    • /
    • 2006
  • Research using multiple shake tables present new and unique challenges in controls. Typical single shake table tests with large specimens must cope with significant specimen force feedback that can increase tracking error due to specimen gain, damping, and non-linearity. Multiple shaking tables with distributed specimens can produce cross-coupling forces due to inertial and response effects and forces due to static differential displacements. Although many various control architectures exist, basic simplified techniques can yield excellent results without risk to control stability. Off-line simulation techniques can also prove invaluable for studying system response before the real system is operated.

  • PDF

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

THE ASYMPTOTIC STABILITY BEHAVIOR IN A LOTKA-VOLTERRA TYPE PREDATOR-PREY SYSTEM

  • Ko, Youn-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.575-587
    • /
    • 2006
  • In this paper, we provide 3 detailed and explicit procedure of obtaining some regions of attraction for the positive steady state (assumed to exist) of a well known Lotka-Volterra type predator-prey system. Also we obtain the sufficient conditions to ensure that the positive equilibrium point of a well known Lotka-Volterra type predator-prey system with a single discrete delay is globally asymptotically stable.

Heat Transfer of an Evaporating Liquid on a Horizontal Plate

  • Joo, Sang-Woo;Park, Min-Soo;Kim, Min-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1649-1661
    • /
    • 2005
  • We consider. a horizontal static liquid layer on a planar solid boundary. The layer is evaporating when the plate is heated. Vapor recoil and thermo-capillary are discussed along with the effect of mass loss and vapor convection due to evaporating liquid and non-equilibrium thermodynamic effects. These coupled systems of equations are reduced to a single evolution equation for the local thickness of the liquid layer by using a long-wave asymptotics. The partial differential equation is solved numerically.

Development of Roller Wheel Mobile Robot (롤러형 바퀴를 갖는 이동로봇 개발)

  • Kim, Soon-Cheol;Yi, Soo-Yeong;Choi, Jae-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.250-257
    • /
    • 2014
  • In this paper, a new mobile robot, so called a rollerbot, is presented, which has single body and rugby-ball shaped roller wheel. A rollerbot has single point contact on ground and low energy consumption in motion because of the reduced friction. By changing center of mass using a balancing weight, a rollerbot is able to get steering force. The vertical position of mass center of the rollerbot in this paper is designed to lie inside radius of the roller wheel, so that to have stable equilibrium position. Thus, the posture and the steering control of the rollerbot can be easily done by changing the center of mass. Kinematics of the rollerbot is derived by transformation of differential motion in this paper.

InGaAs/InAIAs resonant interband tunneling diodes(RITDs) with single quantum well structure (단일양자 우물구조로 된 InGaAs/InAlAs의 밴드간 공명 터널링 다이오드에 관한 연구)

  • Kim, S.J.;Park, Y.S.;Lee, C.J.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1456-1458
    • /
    • 1996
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current density ($J_p$) for the accurate switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of $In_{0.53}Ga_{0.47}As/ln_{0.52}Al_{0.48}As$ heterojunction on the InP substrate, is suggested to improve the PVCR and $J_p$ through the narrowed tunnel barriers. As the result, the measured I-V curves showed the PVCR over 60.

  • PDF

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

A 3.3V 10BIT CURRENT-MODE FOLDING AND INTERPOLATING CMOS AJ D CONVERTER USING AN ARITHMETIC FUNCTIONALITY

  • Chung, Jin-Won;Park, Sung-Yong;Lee, Mi-Hee;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.949-952
    • /
    • 2000
  • A low power 10bit current-mode folding and interpolating CMOS analog to digital converter (ADC) with arithmetic folding blocks is presented in this paper. A current-mode two-level folding amplifier with a high folding rate (FR) is designed not only to prevent ADC from increasing a FR excessively, but also to perform a high resolution at a single power supply of 3.3V The proposed ADC is implemented by a 0.6${\mu}$m n-well CMOS single poly/double metal process. The simulation result shows a differential nonlinearity (DNL) of ${\pm}$0.5LSB, an integral nonlinearity (INL) of ${\pm}$1.0LSB

  • PDF

A Design of a Highly Linear 3 V 10b Video-Speed CMOS D/A Converter (높은 선형성을 가진 3 V 10b 영상 신호 처리용 CMOS D/A 변환기 설계)

  • 이성훈;전병렬;윤상원;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.28-36
    • /
    • 1997
  • In this work, a highly linear video-speed CMOS current-mode digital-to-analog converter (DAC) is proposed. A newswitching scheme for the current cell matrix of the DAC simultaneously reduces graded and symmetrical errors to improve integral nonlinearities (INL). The proposed DAC is designed to operate at any supply voltage between 3V and 5V, and minimizes the glitch energy of analog outputs with degliching circuits developed in this work. The prototype dAC was implemented in a LG 0.8um n-well single-poly double-metal CMOS technology. Experimental results show that the differential and integral nonlinearities are less than .+-. LSB and .+-.0.8LSB respectively. The DAC dissipates 75mW at a 3V single power supply and occupies a chip area of 2.4 mm * 2.9mm.

  • PDF

Applying the Bacterial Meningitis Score in Neonates Diagnosed Meningitis: A Single Center's Experience

  • Park, Sun Young;Seo, Kyoo Hyun;Lee, Jae Min;Lee, Eun Sil;Kim, Saeyoon
    • Neonatal Medicine
    • /
    • v.24 no.1
    • /
    • pp.26-31
    • /
    • 2017
  • Purpose: To identify the factors associated with differential diagnosis of neonatal bacterial meningitis at the earliest opportunities possible and to evaluate the value of the bacterial meningitis score especially in neonates. Methods: We conducted a single-center, retrospective study of neonates diagnosed meningitis at our hospital between January 2000 and March 2014. We compared the general characteristics, clinical manifestations, laboratory findings, bacterial meningitis scores between the bacterial group and the aseptic group. Results: Bacterial meningitis differs significantly from aseptic meningitis in platelet count, the cerebrospinal fluid polymorphonuclear leukocyte count, and the serum protein including also the albumin (P<0.05). Except two infants, the bacterial meningitis score over 2 accurately predict bacterial meningitis in the other 11 infants. Conclusion: The bacterial meningitis score appears highly useful to identify neonatal infants with bacterial meningitis. However, its diagnostic and prognostic value is just 'adjunctive', because low score cannot rule out bacterial meningitis.