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THE ASYMPTOTIC STABILITY BEHAVIOR IN A
LOTKA-VOLTERRA TYPE PREDATOR-PREY SYSTEM

YouNHEE Ko

ABSTRACT. In this paper, we provide a detailed and explicit proce-
dure of obtaining some regions of attraction for the positive steady
state (assumed to exist) of a well known Lotka-Volterra type predat-
or-prey system. Also we obtain the sufficient conditions to ensure
that the positive equilibrium point of a well known Lotka-Volterra
type predator-prey system with a single discrete delay is globally
asymptotically stable.

1. Introduction

We consider the following Lotka-Volterra type predator-prey system
of differential equations

= z(a—y—dz— ar)
(1) v = y(-b+z+ez— ary)
7= zZ{—c+diz — e1y — a22).

Here, a,b,c,d,d;, e, e; are positive constants, and «; > 0,2 > 0, and
the prime denotes derivative with respect to ¢, real variable. The form
of (1) suggests that it can model the interaction of two predators whose
population sizes are, respectively, y(t) and z(t) and prey whose popula-
tion size is z(t). Not only do both predators feed on the prey, but the y
predator also predates on the z predator. In case a3 > 0, the birth rate
of the y predator depends not only on the sizes of the x and z species,
but negatively on its own size y(t¢), and similarly if ap > 0 for the z
predator.
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Also we consider the following Lotka-Volterra type predator-prey sys-
tem of a mathematical model representing a resource (prey) and two
predators system with delay:

= z(a—y—dz—az)
(2) Y= y(-b+z(t-7)-ay)
7= z(—c+dz(t —7) — a2z),

where 7 is a positive constant.

In 1998, G. Seifert obtained some sufficient conditions to ensure that
the positive equilibrium point of (1) is globally asymptotically stable
using a Liapunov function. In this paper, we obtain the sufficient con-
ditions to ensure that the positive equilibrium point of (1) is globally
asymptotically stable using new Liapunov function which has some ad-
vantage in constructing the Liapunov functional for the delay differential
system. Also we obtain the sufficient conditions to ensure that the pos-
itive equilibrium point of (2) is globally asymptotically stable using the
Liapunov functional which is constructed in a straightforward manner
from the Liapunov function which we construct to obtain the sufficient
conditions to ensure that the positive equilibrium point of (1) is globally
asymptotically stable.

2. The global asymptotic stability of the system of differen-
tial equations (1)

We show that under certain conditions, all positive solutions of (1)
will approach a positive equilibrium point as ¢t — 00; note that in the
absence of predators, the first equation of (1) is a simple logistic equa-
tion.

We will only be concerned with positive solutions of (1), and use the
notation

Ri={(m,y,z) cx >0,y >0,2>0}
It is well known that for any solutions (z(t), y(t), z(t)), if (z(to), y(to),
z(tp)) € R3 for some to, then (z(t),y(t), 2(t)) € R3 for all t > to. Since
the system is autonomous, we usually take tg as the so-called initial
time.

We first consider a special case of (1) where d; =d, e; =€, a1 =a2=0.

LEMMA 2.1. If dy=d,e1=e, and oy =ay=0, and if

(2.1) cae < d(ae + ¢ — bd) < bdae
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then (1) will have the unique equilibrium point (z*,y*,2*) € R given

by
. (ae+c—bd)

oe
. {d(ae+c—bd) — ace}
v= ae?
o {bae — (ae +c— bd)}
ae?

Any solution of (1) satisfies (z(t),y(t),2(t)) — (z*,y*,2*) as t — oo.
Also, the linearization of (1) with respect to (z*,y*, z*) has all eigenval-
ues with negative real parts.

Proof. 1f we put u=In %, v=In X% o W= In £ into (1) we get

u- —azx*(e¥ — 1) —y* (e’ — 1) — dz*(e¥ — 1)
(2.2) V= x*(e*—1)+ez (e“’ -1)
w = dx*(e* —1) —ey*(e’ — 1).

Define a Liapunov function

) y w(t) ,
V(uvw)-z /0 (e* —1)ds+——/0 (e* —1)ds+/0 (e° — 1)ds.

Then we have
* *

Vio.a) (10, w) = (% = D (8) + 2 (€ — L' (8) + (e — /(1)

=—(e" = Di—az™(e" — 1) —y"(v" — 1) —dz"(e” — 1)}

8 N

*

+ g;(e” — D) {z*(e" = 1) + ez"(e¥ — 1)}
+ (¥ — 1){dz*(e" - 1) —ey* (e’ — 1)}
a(:v*)2

=— =L (e* —1)%
"L e - 1)

From a result in the theory of stability (cf. Theorem 1.3, p. 296 in [3])
it follows that (u(t),v(t),w(t)) — M as t — oo where M is the largest
invariant subset with respect to (2.2) of S,

§={(u,v,w) | V(12.2) (u,v,w)=0}.
If (u(t),v(t),w(t)) is a solution of (2.2) and (u(t),v(t),w(t)) € M, then
(2.3) —y*(e¥ — 1) — dz*(e¥ — 1)=0,

v=ez*(e¥ - 1),
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and
(2.4) w'=~—ey* (e’ — 1).

Now we note that

dz*
and
(2.5) o = (ex")(— (e = ) =—(Z1) (e’ ~ 1).
From (2.4) and (2.5) we have
(2.6) w' =dv'.

From (2.3) and (2.6) we have
—y*e"v — (dz*)e”dv' =0
and
(y*e’ + d%z*e¥)v' =0.

Thus v’ =0, that is, v/ = ez*(e% — 1) =0 and w = 0. By the similar
argument we have w' =0 and v=0. Hence M ={(0,0,0)} and the first
part of the lemma follows.

On the other hand, we try to show that the equilibrium (z*,y*, 2*)
of (1) is locally asymptotically stable.

By linearization of (1) at (z*,y*, z*), we obtain the system of differ-
ential equations

z(—au — v — dw),
y(u+0- v+ ew),
z(du — ey + 0 - w),

u/
(2.7) v’
w/

where u=z — 2", v=y —y* ,w=2z—2*,dy =d,eg=e, and oy =3 =0.
Thus the Jacobian matrix J of (2,7) at (0,0) is given by
—a -1 —d
J=1 1 0 e
d —e 0
Consider det(AI — J)=0. Then we have
A% 4 aX? 4 (d% 4 €2 + 1)\ + ae? =0.

Since a > 0,ce? > 0, and a(d? +e? +1) — ae? = ad® + a > 0, all
eigen values of det(AI — J)=0 have negative real parts (by the Routh-
Hurwitz criterion). Hence, the equilibrium (z*,y*, 2*) of (1) is locally
asymptotically stable. O



The asymptotic stability behavior in a Lotka-Volterra type 579

THEOREM 2.2. Let (2.1) hold. Then there exists § > 0 such that
for 0 < aq < 6,0 < g < 4,|e — e1] < 4, (1) has a unique equilibrium
point (z*,y*,2*) € R3 and for such a; and ag, there exists 61 > 0,
0 < & < & such that for |[d — di| < 61, |e — e1| < &1 each solution
(z(t),y(t),2(t)) — (2*,y*, 2z*) as t — 0.

Proof. The equilibrium point (z*, y*, 2*) of (1) now depends on
(a1, a9, d1,e1) and for (a1, a9, di,e1)=(0,0,d, e) reduces to the (z*,y*,
z*) as given as in Lemma 2.1, where
«  aoiaz +aicd + agb + ce — bdex + aee;
T aaiag + die — dey + ddioq + ag + aeey
«_ az(a—ab)+cd+ad) — bdd) — ace
T aajog + die — der + ddyog + o + aee;
. ay(ad; — ac) — ae; + bd; — ¢ + abey
aaiay + die —dey +ddiog + o + aeer

We express (1) in terms of new variables as before:

u=In i, v=ln£, w=In iy
We obtain
v =—az*(e* —1)—y*(e’ — 1) —dz*(e¥ — 1)
(2.8) v =z*(e® = 1) —ary*(e¥ — 1) + ez*(e¥ — 1)

w =diz*(e* — 1) —e1y*(e¥ — 1) — agz*(e¥ — 1).

Define a Liapunov function
u(t) v(t)
V(u,v,w) = x*/ (e° —1)ds + y*/ (e? —1)ds
0 0

w(t)
+ z*/ (e° — 1)ds.
0

Then we have

‘/'(/2,7)(“'7’0’“))

= z*(e¥— v +y*(e¥ — v + 2*(e* — 1)u'

= z*(e¥ - 1){—az*(e¥* — 1) —y*(e’ — 1) — dz*(e¥ — 1)}
+y*(e? — D{z*(e* — 1) — auy*(e¥ — 1) + ez* (e — 1)}
+z2*(e? — 1){diz*(e* — 1) — e1y™(e¥ — 1) — agz*(e¥ — 1)}

= —a(z*)?(e* ~1)2 — z*y*(e* — 1)(e¥ — 1)
—dz*z*(e* — 1)(e¥ — 1) + z*y*(e* — 1)(e¥ — 1)
o () (e — 1)+ ey*z (e — 1)(e¥ — 1) — an(s")2(e” — 1)
+diz*z*(e* — 1)(e¥ — 1) — ery*z*(e? — 1)(e” — 1)
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= —o(z*)(e” — 1)? — an(y*)*(e” — 1)* — az(2*)?(e” — 1)?
—(d—dy)z*z*(e* = 1)(e¥ — 1) + (e — e1)y*2*(e¥ = 1)(e® — 1)
< —a(z)?(e - 1) - on(y)?(e” — 1)? — ag(2*)*(e¥ — 1)?
+ 1A (17)2 (e — 1)2 4 Bl (x)2 (v — 1)2
+ESRl e — 1P + 5 e — 1)
= —(@")? (a—1474) (¥ = 1)~ (y7)? (o - 5220} (ev — 12
—(2")? (g — 'dl—z_dl — |£:§1_l> (e —1)2.

2

For a; and ap as above there is clearly a §; > 0 sufficiently small
such that the right side of the above inequality is negative definite for
|di —d| < 61, |e — e1] < 1. Using a well argument, it follows that
(u(t),v(t),w(t)) — (0,0,0) as t — oo. This implies that

(@(t), y(t), 2(t)) — (2%, 9", 27) as t — oo.
O

3. The global asymptotic stability of the system of differen-
tial equations (2)

In this section, we determine sufficient conditions for global asymp-
totic stability of interior equilibrium of a delayed ecological model (2)
involving a resource and two predators.

¥ =z(a—y—dz— az)

(2) y =y(-b+a(t-7)-ay)
2 =z(—c+dz(t — 7) — ag2)

with initial conditions
z(s)=¢(s) >0, y(0) >0, 2(0) >0,

where 7 > 0 is a constant time delay and ¢(s) is a continuous function
from [—7, 0] = R.

In system (2), all parameters are positive constants, x(t) denotes the
biomass at time ¢ of resource species and y(t) and z(t) represent the
densities of two-predators, respectively.

It is widely known that past history as well as current conditions can
influence population dynamics and such interactions have motivated the
introduction of delays in population growth models. Sometimes delay
can change the dynamics. In delay models with complicated dynamics,
the question of global asymptotic stability is very important. Modelling
of the ecological interactions involving time delay for population has
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been dealt recently by Kuang [5]. More recently, Cao and Freedman [1]
considered a general class of models of prey-predator interactions with
time delay due to gestation.

In general, the construction of suitable Liapunov functional related
the system of delayed differential equations is practically difficult and
tedious job. But we construct the Liapunov functional related to (2) in a
straightforward manner from the Liapunov function which we construct
to obtain the sufficient conditions to ensure that the positive equilibrium
point of (1) is globally asymptotically stable.

LEMMA 3.1. If a > ab and ad > ac, then all solutions of (2) are
bounded.

Proof. We can see from the form of the system (2) that its solutions
with nonnegative initial conditions are positive, and hence,

2'(t)=z(a —y —dz — az) < z(a — az).

It is an elementary fact from ordinary differential equations theory that
there exists 77 > 0 such that

2(t) < 2 if ¢t > Ty + 2.
(81

Also we have
Y =y(=b+z(t—7)—a1y)

<y(=b+ g —oy) = y{<a_aba> - aly}-

That is, there exists T such that Tp > 71 + 7 and y(t) < (% ba) if
t > 1.
From (2)

Z'(t) = 2(—c+dz(t — 7) — a22)

d—
Sz(—c—i—ﬁl——agz):z(a ac—a22>.
a a

That is, there exists T3 such that 75 > 71 + 7 and z(t) < —%;2& if
t>Ts.

LEMMA 3.2. Let f be a nonnegative function defined on [0, oo) such
that f is integrable on [0, o) and is uniformly continuous on [0, ©0).
Then

lim f(t)=0.

t—o00
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Proof. Suppose f does not approach zero as t — oo. Then there is an
€0 > 0 such that for any M > 0 there exists Tys such that Tpr > M and
f(Th) > €. This implies that there is an increasing sequence {t,} such
that ¢, — oo as n — oo and f(t,) > €. Suppose that f is uniformly
continuous on [0, c0). Then there is a 6§ > 0 which depends on ¢; > 0
such that f(t) > ¢ for any t € (t, — 9, t,+0) and any n. Now we may
assume that the intervals (¢, — 6, ¢, + ) does not overlap. Therefore

oo N rtnts
/0 f(t)dt > ;/t f(t)dt > Negd

n—>0

for any positive integer N and this contradicts the integrability of f on
[0, oo). Hence the lemma follows. O

THEOREM 3.3. Suppose that a > ab and ad > «c and there is a
unique positive equilibrium point (z*, y*, z*) of (2), where

_acmog +ajed+agd  ,  az(a—ab) + d(c — bd)
T acas+d?ai+ae’ Y aocias + a4+ as
e az(ad —ac)+bd —c¢

aaiay + d2aq + o

*

Moreover, if

M,y M
(My+d2Mz+a1 2yy +aa; Z)T<a,
M,z* M,o*
y;T<1, andd ;m7'<1,

then the unique positive equilibrium point (z*,y*, 2*) of (2) is globally
asymptotically stable, where
a a—ab _ad—ac

My=—, M,= , M,= .
(67 (61041 aQg

Proof. If we put u=In=Z, v=In%, w=In % into (2), we get
T Y z

W) = —az*(e*® —1) —y*(e’® — 1) — dz*(e*® - 1)
= z*(e*t"7) — 1) — oy (e’® — 1)
w(t) = dr*(e*t=T) — 1) — apz*(e?® ~1).

<
~
e
N’

(3.1)



The asymptotic stability behavior in a Lotka-Volterra type

Define a Liapunov functional

Vu,v,w)
u(t) v(t+T1)
= x*/ (e’ — 1)ds + y*/ (ef —1)ds
0 0

w(t+7)
+ z*/ (e — 1)ds.
0

Then we have
(3.2)
V(I?,.l)(“’”»w)
= 2*(e*® — D' (t) + y* (e’ — 1)/ (t + 7)
+2*(eCHT) — D! (8 + 7)
= z*(e*® —1){—az*(e*® — 1) —y*(e*® — 1) —dz*(e¥® — 1)}
+y*(€v(t+r) _ 1){x*(e“(t) —1)— aly*(ev(t+r) -1)}
+Z*(ew(t+7') _ 1){dx*(eu(t) —1)— aQZ*(ew(t+T) —1)}
— _a(m*)Z(eu(t) _ 1)2 _ m*y*(eu(t) _ 1)(ev(t) _ 1)
—dx** ( 1)( w(t) _ 1) + w*y*(e“(t) _ 1)(ev(t+7—) _ 1)
—a1(y ) (e t+7‘) ) + dm‘*z*(eu(t) _ 1)(ew(t+r) —1)
—‘CYQ(Z*)2( w(t+r)
= —afa) e 1) al(y*>2<ev<t+f> 1y
_a2(z*)2( w(t+7’) 1)2 + z*y* (€ u(t) 1){ev(t+'r) _ ev(t)}
+dzry*(er®) — 1) {ew(tt7) — w(®)}
= Dl -1 - a2 17

i+7
_02(2*)2(ew(t+r) _ 1)2 + x*y*(e“(t) _ 1)/ dev(s)
t+7 t
+da*z* (e*®) — 1) de®®)
t
— __a(x*)Q(eu(t) _ 1)2 _ al(y*)Z(ev(H-'r) _ 1)2

t+1
—ap(2)2(e® ) — 1)2 4 gry*(e*® — 1)/ e’/ (s)ds
t
t+1
+ da*z* (et — 1)/ e/ (s)ds

t
= —a(e"(e O — 1) — oy (") () — 1)
_az(z*)2(ew(t+f) _ 1)2
t+1

583

+x*y*(eu(t) — 1)/ %{x*(eu(s—ﬂ _ 1) _ Cyly*(ew(s) _ 1)}d8

¢
) o Z(S) * 0 u(s—T1) * ¢ w(s)
+dz*z* (e —1) 7{dm (e —1)—a2z*(e“" — 1)}ds.
¢
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By lemma 3.1

a a—ob ad — ac
0< <— 0<y(t) < 0<z(t) <
<a(t) <)< =2 0<a( <

Q

eventually for all large ¢. That is, there exists T* > 0 such that if ¢ > T,
then
z(t) < Mg, y(t) < M, and 2(t) < M,.

From (3.2) if t > T* + 7, then we have
(3.3)

‘/(/31) (’LL, v, ’LU)

< —a@P (e — 12 - g (e 1)
_a2(z*)2(ew(t+‘r) _ 1)2

t+71
+(z*)2 M, |e“®) — 1|/ lev(s=7) — 1|ds

t
t+7
+arz*y* Myle®) — ll/ |e?(®) — 1|ds
¢

t+1
+d2(2*)2 M, [e4®) — 1] / =) _ 1]ds
t

t+7
+dagz*2* M,|e*® — 1] le®() — 1|ds

t
—a(:p*)z(e“(t) * 1)2 _ 011(?,/ ) ( v(t+71) _ 1)2
—ap(2*)2(e?t+) —1)2 4 & ) ¥ (eu® — 1)27

IA

- t Mo (x* 2
+( );My (eu(s) _ 1)2d8+ ai yg (x ) (eu(t) _ 1)27_

t—7
2 *\2
d Mz(iL‘ ) (6u(t) _ 1)27,

+041M1 z2*(y*)2 /t (ev(s+T) . 1)2d5 +
t - *\2
+d2Mz2(w*)2 / (eu(s) _ 1)2d$ + da2]\42z(1' ) (eu(t) _ 1)27_
t—1
t
| doaMea”()? / (e¥(++7) _ 1Y2s.
t—1
Define a Liapunov functional U(u,v,w) as following:
¢
U(u,v,w) = V(u,v,w) + ——— My@)” ik / (/ (eM®) — 1)2d8> dp
2 t—7 P
)2t t
4 2y A ) alM z* ( v(s+7’) _ 1)2d$) dp
t— P

*\2 t t
+d Mz ( (o) — 2ds>d

t—r
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* *\2 t t
i SR [([(torn 1)
t—r p

if £ > T + 7. Then, from (3.3), we have

U(Ig_l) (ua v, 'LU)
~a(z*)(e ) — 12 — o (y") e ) — 1)2
_az(z*)Z(ew(t—}—T) _ 1)2 + M(eu(t) _ 1)27_
t
+ 2 /t () — 1)%ds
—T
+alMyy2*($*)2 (CU(t) —1)2

IA

T

. t 2 *12
+a1Myx2 (y*)? /t (eu(s+f) —1)%ds + d M,;(:c ) (e“(t) — 1)
T

e *\2
+d2M22(w )2 /t (eu(s) _ I)st 1+ da2]\42z(l' ) (eu(t) —_ 1)27-
T

- )

+da2Mzw*(z*)2 / ( w(s+7) _ 1)2ds + M (;*) (eU(t) _ 1)27_
t—r

_ y z*)? u(S) )2d +a1My.’E (y*)

t— 'r 2

-Mﬁ;——/ ev(s+) 1)%ds +

( v(t+T) _ 1)27_
2
d? M( ) (eu(t) _ 1)27_
t—7 2
t * (. k\2
_dzMzgx*f/ (e¥) — 1)2ds + da?Mz; (") (ew(t+f) —1)%r
t—1
dag M. z* (2*)? ¢ w{s+7) 2
—feens 2 L (e —1)%ds
t—1

if t > T* + 7. That is,

Uls1)(u,0,w) < — ()2 A(e*® — 1)2 — ()2 B(e"®7) — 1)?
— ()20 (et — 1)?

if t > T* 4+ 7, where

M *
A={a - (My—i—dzMz +2 -+ do‘;MZ> T};

B:{al_ &Qyﬂ”} and C:{ar d&]‘gﬂ}

585
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Thus
t

Uu(t), v(t), w(t)) + (z*)?A - (e¥(s) — 1)%ds
+(y*)23 ¢ (eU(S+T) _ 1)2 ds
+(z*)2C (ew(s+'r) _ 1)2 ds
T*+1
= Uu(®),v(t), w(t))

+A (z(s) —z*)* ds
TZ‘+7'
+B/ (y(s +7) —y*)*ds
Tt*-l-T
+C (2(s+7) —2%) ds
T*47
< U@(T* + 7),0(T* + 1), 2(T* + 1)).
Also from lemma 3.1 we note that z(t),y(t), and z(¢) are uniformly
continuous on [T*, o). By lemma 3.2 (x(t),y(t), 2(t)) — (z*,y*,2*) as
t — oo. Hence the proof is complete. O

REMARK 3.4. It is not difficult to find the suitable constants a, b, ¢, d,
o, a1, a9, T which satisfy the conditions in Theorem 3.3 if 7 is small
enough. For example, we can choose the constants such that @ = b =
5 c=35d=% a=m =1 a;=% 0< 7 <1 Alsowe can choose
the constants such that a=2, b= %, c= %, d= %,

3 5
5 0s7<%

a=1, a1=2, ag=
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