• 제목/요약/키워드: Single-stranded DNA

검색결과 148건 처리시간 0.024초

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Baek, Kyung Yup;Kim, Seohyun;Koh, Hye Ran
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.26-32
    • /
    • 2022
  • Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

탄소 나노튜브와 생체 분자와의 결합을 통한 나노-바이오 응용 (Nano-Bio Applications Using Carbon Nanotube-Biomolecule Conjugates)

  • 황응수;조승범;홍상현;정혜진;차창용;최재붕;김영진;백승현
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.179-186
    • /
    • 2006
  • Single-walled carbon nanotubes (SWNT) exhibit strong Raman signals as well as fluorescence emissions in the near infrared regions where most biomolecules are transparent. Such signals do not blink or photobleach under prolonged excitation. which is advantageous to optical nano-bio marker applications. In this paper, single walled carbon nanotubes are conjugated with specific types of single-stranded DNA in order to detect oligonucleotides of corresponding complimentary sequences. Dot blotting experiments and comparative Raman spectroscopy observations demonstrated excellent sensitivity and specificity of carbon nanotube-DNA probes. The results show the possibility of using SWNT as generic nano-bio markers for the precise detection of specific kinds of genes.

Characterization of HRD3, a Schizosaccharomyces pombe Gene Involved in DNA Repair and Cell Viability

  • Choi, In-Soon
    • Animal cells and systems
    • /
    • 제7권2호
    • /
    • pp.159-164
    • /
    • 2003
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. The RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA-RNA helicase activities. To examine the extent of conservation of structure and function of a S. pombe RAD3 during eukaryotic evolution, the RAD3 homolog gene was isolated by screening of genomic DNA library. The isolated gene was designated as HRD3 (homolog of RAD3 gene). Southern blot analysis confirmed that S. pombe chromosome contains the same DNA as HRD3 gene and this gene exists as a single copy in S. pombe. The transcript of 2.8 kb was detected by Northern blot analysis, The level of transcripts increased by ultraviolet (UV) irradiation, indicating that HRD3 is one of the UV-inducible genes in S. pombe. Furthermore, the predicted partial sequence of HRD3 protein has 60% identity to S. cerevisiae RAD3 gene. This homology was particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that the HRD3 gene is essential for viability and DNA repair function. These observations suggest evolutionary conservation of other protein components with which HRD3 might interact in mediating its DNA repair and viability functions.

Stimulation of Oligonucleotide-Directed Gene Correction by Redβ Expression and MSH2 Depletion in Human HT1080 Cells

  • Xu, Ke;Stewart, A. Francis;Porter, Andrew C.G.
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.33-39
    • /
    • 2015
  • The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of $Red{\beta}$, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that $Red{\beta}$ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of $Red{\beta}$ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.

Immobilization of Proteins on Magnetic Nanoparticles

  • Wang, Tzu-Hsien;Lee, Wen-Chien
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.263-267
    • /
    • 2003
  • Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation of Nethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticie. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the a ctivation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • 제11권2호
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF

Development of Molecular Biological Methods to Analyze Bacterial Species Diversity in Freshwater and Soil Ecosystems

  • Lee, Dong-Hun;Noh, Sung-Ae;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • 제38권1호
    • /
    • pp.11-17
    • /
    • 2000
  • A new method was developed for the rapid analysis of diverse bacterial species in the natural environment. Our method is based on PCR-single-strands-conformation polymorphism (PCR-SSCP) and selective isolation technique of single-stranded DNA. Variable V3 fragments of 16S rDNA were amplified by PCR with bacterial 16S rDNA primers, where one of the primers was biotinylated at the 5'-end. The biotinylated strands of the PCR products were selectively isolated by using streptavidin paramagnetic particles and a magnetic stand, to prevent SSCP analysis producing heteroduplexes from heterogeneous DNA samples. The selected strands were separated by electrophoresis on a polyacrylamide gel, and detected by silver staining. Analysis of PCR products from 8 bacterial strains demonstrated their characteristic DNA band patterns. In addition, changes in the structure of the bacterial community and species diversity in the microcosm treated with phenol could be monitored. After 3 weeks of incubation, phenol and its intermediate, 2-hydroxy-muconic-semialdehyde, were degraded by indigenous bacteria. These dominating bacterial populations were identified as strong bands on an SSCP gel. Therefore, this study provides useful tools for microbial community analysis of natural habitats.

  • PDF

Purification and Characterization of an Acid Deoxyribonuclease from the Cultured Mycelia of Cordyceps sinensis

  • Ye, Maoqing;Hu, Zheng;Fan, Ying;He, Ling;Xia, Fubao;Zou, Guolin
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.466-473
    • /
    • 2004
  • A new acid deoxyribonuclease (DNase) was purified from the cultured mycelia of Cordyceps sinensis, and designated CSDNase. CSDNase was purified by $(NH_4)_2SO_4$ precipitation, Sephacryl S-100 HR gel filtration, weak anion-exchange HPLC, and gel filtration HPLC. The protein was single-chained, with an apparent molecular mass of ca. 34 kDa, as revealed by SDS-PAGE, and an isoelectric point of 7.05, as estimated by isoelectric focusing. CSDNase acted on both double-stranded (ds) and single- stranded (ss) DNA, but preferentially on dsDNA. The optimum pH of CSDNase was pH 5.5 and its optimum temperature 55. The activity of CSDNase was not dependent on divalent cations, but its enzymic activity was inhibited by high concentration of the cation: $MgCl_2$ above 150 mM, $MnCl_2$ above 200 mM, $ZnCl_2$ above 150 mM, $CaCl_2$ above 200 mM, NaCl above 300 mM, and KCl above 300 mM. CSDNase was found to hydrolyze DNA, and to generate 3-phosphate and 5-OH termini. These results indicate that the nucleolytic properties of CSDNase are essentially the same as those of other well-characterized acid DNases, and that CSDNase is a member of the acid DNase family. To our knowledge, this is the first report of an acid DNase in a fungus.