• Title/Summary/Keyword: Single-machine scheduling

Search Result 76, Processing Time 0.024 seconds

Production Scheduling using Overtime (잔업을 고려한 생산 스케쥴링)

  • 민병도;임석철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.197-205
    • /
    • 1997
  • Manufacturers can meet the due dates of orders by using overtime, in which case, additional cost incurs for the amount of overtime. Although many studies have been reported on scheduling, only a few papers are founds on production scheduling using overtime. We consider the problem of production scheduling using overtime on a single machine, in which each job has a given due-date, a constant processing time. We assume that the daily overtime does not exceed the daily regular operation time. The objectives is to minimize the total overtimes, while meeting all due dates. We first present a mathematical model, and then suggest a heuristic algorithm for the problem.

  • PDF

Multiagent Scheduling of a Single Machine Under Public Information (공적 정보하에서 단일 설비의 다중 에이전트 스케줄링)

  • Lee, Yong-Kyu;Choi, Yoo-Seong;Jeong, In-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • This paper considers a multiagent scheduling problem under public information where a machine is shared by multiple agents. Each agent has a local objective among the minimization of total completion time and the minimization of maximum. In this problem, it is assumed that scheduling information is public. Therefore an agent can access to complete information of other agents and pursue efficient schedules in a centralized manner. We propose an enumeration scheme to find Pareto optimal schedules and a multiobjective genetic algorithm as a heuristic approach. Experimental results indicate that the proposed genetic algorithm yields close-to Pareto optimal solution under a variety of experimental conditions.

Scheduling for a Flexible Manufacturing Cell with Transportation Time (유연가공셀에서 운반시간을 고려한 일정계획)

  • 최정상;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • This research is concerned with production scheduling for a flexible manufacturing cell which consists of two machine centers with unlimited buffer space and a single automatic guided vehicle. The objective is to develop and evaluate heuristic scheduling procedures that minimize maximum completion time. A numerical example illustrates the proposed algorithm. The heuristic algorithm is implemented for various cases by SLAM II. The results show that the proposed algorithm provides better solutions than Johnson's. It also gets good solutions to minimize mean flowtime.

  • PDF

Compromising Multiple Objectives in Production Scheduling: A Data Mining Approach

  • Hwang, Wook-Yeon;Lee, Jong-Seok
    • Management Science and Financial Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In multi-objective scheduling problems, the objectives are usually in conflict. To obtain a satisfactory compromise and resolve the issue of NP-hardness, most existing works have suggested employing meta-heuristic methods, such as genetic algorithms. In this research, we propose a novel data-driven approach for generating a single solution that compromises multiple rules pursuing different objectives. The proposed method uses a data mining technique, namely, random forests, in order to extract the logics of several historic schedules and aggregate those. Since it involves learning predictive models, future schedules with the same previous objectives can be easily and quickly obtained by applying new production data into the models. The proposed approach is illustrated with a simulation study, where it appears to successfully produce a new solution showing balanced scheduling performances.

A Constrained Single Machine Scheduling Model with Earliness/Tardiness and Flow Time Measures

  • Joo, Un-Gi;Sung, Chang-Sup
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.115-130
    • /
    • 1995
  • This paper considers a single machine nonpreemptive scheduling problem with a given common due date. In the problem, the optimal job sequence is sought to minimize the sum of earliness/tardiness and flow time measures in the situation where all jobs are available at time zero, and weights per unit length of earliness/tardiness and flow time are V and W, respectively. Some dominant solution properties are characterized to deriva both an optimal starting time for an arbitrary sequence and sequence improvement rules. The optimal schedule is found to the case W .geq. V/. By the way, it is difficult to find the optimal schedule for the case W < V. Therefore, the derived properties are put on together to construct a heuristic solution algorithm for the case W < V, and its effectiveness is rated at the mean relative error of about 3% on randomly generated numerical problems.

  • PDF

A Genetic Algorithm for Single Machine Scheduling with Unequal Release Dates and Due Dates (상이한 납기와 도착시간을 갖는 단일기계 일정계획을 위한 유전 알고리즘 설계)

  • 이동현;이경근;김재균;박창권;장길상
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.73-82
    • /
    • 1999
  • In this paper, we address a single machine non-preemptive n-job scheduling problem to minimize the sum of earliness and tardiness with different release times and due dates. To solve the problem, we propose a genetic algorithm with new crossover and mutation operators to find the job sequencing. For the proposed genetic algorithm, the optimal pair of crossover and mutation rates is investigated. To illustrate the suitability of genetic algorithm, solutions of genetic algorithm are compared with solutions of exhaustive enumeration method in small size problems and tabu search method in large size problems. Computational results demonstrate that the proposed genetic algorithm provides the near-optimal job sequencing in the real world problem.

  • PDF

Just-in-time Scheduling with Multiple Competing Agents (다수의 경쟁이 존재하는 환경에서 적시 스케줄링에 관한 연구)

  • Chung, Dae-Young;Choi, Byung-Cheon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • We consider a multi-agent scheduling problem such that each agent tries to maximize the weighted number of just-in-time jobs. Two objectives are considered : the first is to find the optimal solution for one agent with constraints on the other agents' weight functions, and the second is to find the largest set of efficient schedules of which corresponding objective vectors are different for the case with identical weights. We show that when the number of agents is fixed, the single machine case with the first objective is NP-hard in the ordinary sense, and present the polynomial- time algorithm for the two-machine flow shop case with the second objective and identical weights.

Chaotic Behavior of a Single Machine Scheduling Problem with an Expected Mean Flow Time Measure (기대 평균흐름시간 최소화를 위한 단일설비 일정계획의 성능변동 분석)

  • Joo, Un Gi
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.1
    • /
    • pp.87-98
    • /
    • 2016
  • A single machine scheduling problem for jobs with stochastic processing time is considered in this study. Shortest processing time (SPT) sequencing according to the expected processing times of jobs is optimal for schedules with minimal expected mean flow time when all the jobs arrive to be scheduled and their expected processing times are known. However, SPT sequencing according to the expected processing time may not be optimal for the minimization of the mean flow time when the actual processing times of jobs are known. This study evaluates the complexity of SPT sequencing through a comparison of the mean flow times of schedules based on the expected processing times and actual processing times of randomly generated jobs. Evaluation results show that SPT sequencing according to the expected flow time exhibits chaotic variation to the optimal mean flow time. The relative deviation from the optimal mean flow time increases as the number of jobs, processing time, or coefficient of variation increases.

STOCHASTIC SINGLE MACHINE SCHEDULING SUBJECT TO MACHINES BREAKDOWNS WITH QUADRATIC EARLY-TARDY PENALTIES FOR THE PREEMPTIVE-REPEAT MODEL

  • Tang, Hengyong;Zhao, Chuanli
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.183-199
    • /
    • 2007
  • In this paper we research the problem in which the objective is to minimize the sum of squared deviations of job expected completion times from the due date, and the job processing times are stochastic. In the problem the machine is subject to stochastic breakdowns and all jobs are preempt-repeat. In order to show that the replacing ESSD by SSDE is reasonable, we discuss difference between ESSD function and SSDE function. We first give an express of the expected completion times for both cases without resampling and with resampling. Then we show that the optimal sequence of the problem V-shaped with respect to expected occupying time. A dynamic programming algorithm based on the V-shape property of the optimal sequence is suggested. The time complexity of the algorithm is pseudopolynomial.