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A Constrained Single Machine Scheduling Model
with Earliness / Tardiness and Flow Time Measures

Un Gi Joo* - Chang Sup Sung*™

Abstract

This paper considers a single machine nonpreemptive scheduling problem with a given common
due date. In the problem, the optimal job s:quence is sought to minimize the sum of
earliness /tardiness and flow time measures in the situation where all jobs are available at time
zero, and weights per unit length of earliness/tardiness and flow time are V and W, respectively.

Some dominant solution properties are characterized to derive both an optimal starting time for
an arbitrary sequence and sequence improvement r:iles. The optimal schedule is found for the case
W=V. By the way, it is difficult to find the optimal schedule for the case W({V. Therefore, the
derived properties are put on together to construct a heuristic solution algorithm for the case W
(V, and its effectiveness is rated at the mean relative error of about 3% on randomly generated

numerical problems.

1. Introduction

This paper considers a single machine nonpreemptive scheduling problem with a given com-
mon due date for all jobs, where all the jobs arc available at time zero. The objective is to
find the optimal schedule which minimizes sum of flow time and earliness/tardiness with re-

spect to the due date.
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Many researches have been studied for the carliness/tardiness problem on a single machine.
For example, Panwalkar et al. [9] have considered an earliness/tardiness problem including
flow time measure to find the optimal sequence and due date. Cheng[2] and Dickman et al.
[5] have studied a single machine earliness/tardiness scheduling problem with a common due
date to be determined and with each job penalty imposed only on a certain range of its com-
pletion time deviation from the common due cate. Sung and Joo[10] have considered a sched-
uling problem to minimize the sum of earliness/tardiness and starting time penalties for all
jobs, where all the jobs are not necessarily available at time zero. De et al. {4] and
Mittenthal and Raghavachari{8] have found sequences for minimizing both mean completion
tme and variance of job completion times, where the minimization of variance of completion
times equals to that of quadratic early-tardy penalties under the unconstrained common due
date. The excellent survey work for the earliness/tardiness problem has been performed by
Baker and Schdder[1].

This paper considers the same type problem as Panwalker et al. [9] which the due date is
considered as a decision value. By the way, in this paper, the due date is a given value. No-
tice that, as described by Hall et al. [7], the earliness/tardiness problem is NP-complete, if
the due date is a restrictively given value. Therefore, a heuristic algorithm may be required
to find good schedule efficiently for the problem with restrictively given due date.

The basic motivation of consideration on earliness and tardiness problem is derived in JIT
{Just-In-Time) system. And the minimization of flow time represents the reduction of in-pro-
cess-inventory or operating cost. The objective of this paper represents an aim for delivering
the jobs to prevent loss of goodwill and for minimizing in-process-inventory simultaneously.

Therefore, there occur tradeoffs between amount of inventory and penalty for loss of goodwill
on production and sales departments, respectively.

This paper is composed as follows: In Section 2, problem formulation is described. In Sec-
tion 3, some dominant solution properties are characterized and then a heuristic solution al-
gorithm is presented in Section 4. In Section 3, computational experience is discussed. Finally,

concluding remarks are added in Section 6.
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2. Model Formulation

Let us define the following notations:
n=total number of jobs to be processed
p,=processing time of job i(i=1, 2, «--, n)
d=a given common due date
C.=completion(flow) time of job i in a sequence
s=processing starting time for the first job in &« sequence
W=flow time penalty per unit time

V =earliness / tardiness penalty per unit time

The objective is to find the optimal schedule, S* which minimizes
ZS) = LWC, + LVIC-dl.
=1 =

The first term represents total flow time and the second term represents the
earliness / tardiness penalty. This objective function may be applicable for situations of manu-
facturing large goods via splitting with several sub-lots, or perishable goods, and it is further

applicable in shipping schedule.

3. Dominant Solution Properties

For analysis, some additional notations are introduced:
A,=set of jobs following job % in a given sequence(schedule)
B,=set of jobs preceding job % in a given sequencc
E=set of jobs completed early
T=set of jobs completed late
|Al=cardinalty of set A

It is well known that the first and second terms in Z(S) are minimized by SPT(Shortest
Processing Time) and V-shaped sequencing without intermediate idle time, respectively.
In this section, some properties are characterized to minimize earliness/tardiness and flow

time measures simultaneously.



118 Un Gi Joo - Chang Sujp Sung R R

(= TR

Proposition 1. A sequence without intermediate idle time is dominant.
Proof. It is obvious for a tardy job set since 7'S) becomes a regular measure for the job set
(Conway et al. [3]). And, for an early job set, it can be easily shown that shifting right of a
sequence so that the sequence have no intermediate idle time is not worse when W({V. Similarly,
shifting left to make a sequence without intermcdiate idle time is not worse when W=V,

This completes the proof.

Proposition 1 implies that a schedule of a sequence is determined when processing starting
time of the first job is determined for the given sequence. And notice that the processing
starting time for the first job is important because of incorporation of flow time. The follow-

ing proposition describes the optimal starting tume for an arbitrary sequence.

Proposition 2. Consider a given sequence S ordered as 1-2----n and satisfying
4 r+1 n

the relations Yp,<d and 3 p>d for a job r, (r<n), where if ¥ p<d, then let r=n. Let [ be the
=1 =i =1

largest integer smaller than or equal to n(V+W)/2V. Then, the optimal starting time, 5%, of

the first job is determined as

0, if r<n(V+W)/2v,
!

any point on the closed domain [0, d—}p,], if r=n(V+W)/2V,
=1

e J—

i1 !

any point on the closed domain [d -Yp, d—Ypl, if r>a(V+W)/2V=]
= =1

dj;p,, if r>np(VAW)/2V #L

Proof. For a given schedule S, the job index % can be defined so that either C; < d < Gy, or
C,=d. The proof will be accomplished for each case. Consider a schedule S such that C. < d
< C,.,, where it is noticed that |E|=k. And consider schedules S' and §° resulted from shift-
ing right and left the sequence S, so that Cl=¢d and Ci;;=d, respectively. Then, the differences
of objective values are

Z(8) — Z(S"H) = —(d-CHa(V+W) — 2V|E| , and

Z(8) — Z(8) = —(Cu.—DnV+W) — 2VIE|..

Therefore, Z(S)) = Z(S") if |E| = n(V+W)/.V and Z(S)) > Z(S) if |E|l < a(VAW)/2V.
Now, consider a schedule S, such that C,=u, where it is noticed that |E[=Fk. And consider
schedules S* and $' resulted from shifting left and right the schedule S. so that Ci < d < (.,

and C! > d, respectively. Then, the differences of objective values between S., S, and S' are

72(8) — Z(S) = —(d—C)n(V+W) — 2V|E| , and
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Z(S) — Z(8Y = —(C,—D[n(V+W) — 2VIE|+2V].

Therefore, Z(S,) > Z(8") if |El<n(V+W)/2V and Z(S)2Z(S) if |E|l = n(V+W)/2V+].
From the above results, the following facts are derived:

Case (1). If |E| < n(V+W)/2V, then the left :hifted schedules, §°, and S° are better than

original schedules S, and S..

Case (2). If |E| = n(V+W)/2V, then the schedules, S, S, S', & and &, have the same objec-

tive value.

Case (3). If |E| > n(V4+W)/2V=], then the schedule S, can be improved by shifting right to

make S', and S'(which is same as S.) can also be improved by shifting right to make S' when

|E| >=1+41. Then, it becomes the Case (2). This fact can be applied for S: similarly.

Case (4). If |E| > n(V+W)/2V #[, then the schedule S, can be improved by shifting right as

{
similar way Case (3). However, d—3 p, can not be optimal since a situation of |E|=n(V+W)
=1

{2V +1 can not be occurred in this case. Notice that this fact is also applicable for the job

index r such that zp < d and ip > d.

This completes the proof.

Notice that proposition 2 characterizes the optimal starting time for a given sequence and
the optimal number of early jobs is at most r, and the value of 2(V+W)/2V is larger than or
equal to n if W=V, and n/2 < a(V4+W)/2V < » if W<V. It is also noticed that s*=0 when
r<n(V+W)/2V, and schedules such as completion time of a job coinciding with the due date
are sufficient for the optimal schedule when r>n(V+W)/2V. However, we do not yet know
what sequence is optimal, and the optimal starting time for Z(S)(not for a given sequence) is
not characterized.

The folowing corollary describes a special case for finding the optimal starting time of Z(S).

!
Corollary 3. For the given problem Z(S), Y} p,<d irom the SPT sequencing, then s*=0 in opti-
J=1

mum, where [ is the largest integer smaller than or equal to n(V+W)/2V.

Proof. It is noticed that the total number of early jobs in a schedule is maximum when the
schedule is resulted from SPT sequencing. Therefore, if the maximum number of early jobs are
less than or equal to {, s*=0 is optimal by Proposition 2.

This completes the proof.

The above two properties characterize the optimal starting time for a sequence. The

characterization of which sequence is optimal is now described according to the relative size of
W and V.
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Proposition 4. If W>V, then the optimal schedule is obtained by SPT sequencing with starting

time s5*=0.

Proof. Notice that an SPT sequencing is optimal for the tardy job set about both of
earliness /tardiness and flow time measures.

It remains to show that the SPT sequencing is also optimal for early job set, and the
smallest processing time in tardy job set is not smaller than that of associated jobs in early
job set. For the proof, consider a schedule S with adjacent two jobs i and ;j in early, and
another schedule S' which is the same as & except the positions of jobs 1 and ; are
interchanged. Then, Z(S) —Z(S8")=(p.—p,)(W—V). Therefore, SPT is also optimal for early job
set.

Secondly, to show that the smallest processin; time among the tardy job set is not smaller
than that of associated jobs in early job set in optimum, consider a schedule § such that a
job i is in the early job set and a job j is ia the tardy job set, and another schedule S'
which is the same as S except the positions ¢ the jobs i/ and j are interchanged. Then, the
objective value Z(S) minus Z{(S') is negative wlen p,<p,

This completes the proof.

For example, consider seven jobs with procissing times p,=5, 10, 12, 30, 31, 40, 45, and
d=90, W=10, V=8. Then, since W>V, s*=0 is optimal and the optimal sequence 1s SPT order

by Proposition 4, i.e., 1-2-34-56-7 is the optima: sequence.

For the remaining case W<V, the shape of optimal sequence is characterized as following

proposition.

Proposition 5. If W<V, then the optimal sequence is a V-shape, that is, the LPT(Longest

Processing Time) and SPT sequencing for early and tardy job set are optimal, respectively.

Proof. Suppose that a schedule is sequenced as [1]-[2]---[n;—1]-[n] —(ng) —(n;—1)—--(2)(1)
with processing starting time s of the first job, where n; and n, denote total number of the
early and tardy jobs in the schedule, respectively (n,+n,=n). Then, the objective function Z(S)

transforms as follows :'
Z(S)ZnWs-I-A(n;—nzH-i:][W-l-i(V*W)*V] /p[l]-l-i_‘[i(V-!—W)*W]p(,), where A = d—C, =0,

Therefore, an LPT sequencing are optimal for early and tardy job set, respectively.

This completes the proof.
Though it is characterized that the V-shape sequence is optimal for the case W<V by Prop-
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osition 5, it is not easy to find the optimal schedule because there are many V-shape

schedules with different objective values. The next section describes how to find the optimal
schedule for the case W<V,

4. Solution Algorithm for the Case of WV

Though the optimal sequence for the case W>V can be constructed by using Propositions 2
and 4, the problem for the case of W<V is not easy to find the optimal solution.

Notice that the optimal schedule of the problem with W<V can be obtained by full enumer-
ation of n! sequences by Proposition 1 if their corresponding optimal starting times are deter-
mined, where the optimal starting time of a sequeace can be found for its partial sub-sequence
by Proposition 2. Therefore, the optimal schedule can be found by using a branch-and-bound
algorithm. In the branching step, some of possible branches can be fathomed by Proposition 5.

In fact, by result of Proposition 5, the dominaling sequences are at most 2/ gince a job
can be sequenced at either earlier or later than tl.e due date, where [n/2] denotes the largest
integer less than or equal to n/2. Notice that th: branch-andfound algorithm requires partial
sub-sequences to determine the optimal starting {ime, so that the algorithm seems have high
computational load. And, it is impossible to sequence by only using positional weights due to
starting time incorporation, hence, it seems to be NP-complete problem as shown in Hall et al
[6]. Therefore, a heuristic algorithm may be required for a good solution with computational
efficiency.

To develop improving rules for an existing sequence, a pairwise interchange rule and two

movement rules are derived in the following propositions.

Proposition 6. Consider a sequence S where two jons i and j are sequenced early and tardy, re-
spectively. And consider another V-shaped sequence S' which has the same jobs in each early
and tardy job set as S except the positions of the jobs ¢ and j are interchanged. Then, the
sequence S' is not worse than S if |Bl=(V+W)/[(V-W)(1A+1)] and p>p, or |Bi<
(V+W) /[ (V-W)(1A;+1)] and pi<p;.

Proof. et a=p;,—p,. And consider a sequence & which has the same jobs in each early and
tardy job set as S except the positions of the jobs i and j are interchanged so that C°=C; and

C!=C+p,—p;. Then, the difference between objective function values of S and § is
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d (V=W)IB|—(V+W)|A,| —(V+W)], if p>p,
2(8)—Z(8Y) =
d (V+W) 4, —(V=W) B —(V+W)], if p.<p,

The V-shaped sequence S' is obtained by LPT and SPT sequencing for the early and tardy
job set, respectively. And S' is not worse than $* by Proposition 5.
This completes the proof.

Notice that the positions of jobs i and ; can only be interchanged when s>p;,—p if p<p;.

The following two propositions describe cond.tions for moving a job from early position to

tardy position or vice versa.

Proposition 7. Consider a sequence S where tvo jobs ¢ and j are sequenced early and tardy
position, respectively. And consider another V-haped sequence S' which has the same jobs in
each early and tardy job set as S except the job i in early position is moved toward tardy
position. Then, if (V4+W)[(|A,|+1Dp+C1+C(V=W)=2dV<|B(V-W)p or (VHW)(I14,[+1)
p+C—p+p]+C(V - W) —2dV) < B[ (V—~W)p, rhen S is not worse than S.

Proof. Consider a sequence S° which is the same as S except the position of job i is moved
immediately after the job j so that C/=C;+p. Then, the difference of objective function values
of § and & is Z(S)—Z(S)=|B.(V-W)p,— | A; (V+W)p+(2d —CA+C,+p)V+(C;—C —p)W.
Therefore, if (V+W)L(14;|+1)p+CI+C(V - W) =24V <|B|{(V—W)p, then Z(S)=Z(S).

Consider other sequence §° which is the same as S except the position of job ¢ is moved
immediately before the job j so that C/!=C,—p, tp. Then, the difference between objective func-
tion values of 8§ and S is Z(S)—Z(S) =B (V-W)p,— A {(V+W)p—(C;—p+p)} (V+W)—-C
(V-W)+2dV. Therefore, if (V+W)I(1AI-FDp~+C—p+p]+C(V—-W)—2aV<|BI(V-W)p,
then Z(8)=Z(S%). The V-shaped sequence S' iz obtained by sorting the each early and tardy
job set in §° or S% and is then not worse thar S.

This completes the proof.

Proposition 8. Consider a sequence S where two jobs i and j are sequenced early and tardy, re-
spectively. And consider another V-shaped sequence S' which has the same jobs in each early
and tardy job set as S except the job ; in tardy set is moved toward early position. Then, if
(VWA I p,+CYTH(Ci—p ) (V—W) —2dV = [ [(V —W)p, or
(VHW)[(1Alp+C)]+C(V -W) =24V = (| B +1)(V -W)p,

then the sequence S' is not worse than S.
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Proof. Consider a sequence S° which is the same as S except the job ; is moved immediately

before the job i so that C/=C,—p. Then, the difference of objective values between S and & is
Z(S) —Z(S:) = A [ (V+W)p;— | BI(V —W)p;+C;(V+W)+H(C,~p)(V -W) —2dV.
Therefore, if (V+W)[(1A |p;+C)]+(Ci—p)(V—W}—-2dV > |B,[(V—-W)p,, then Z(8)>Z(S).

Consider other sequence §' which is the same as S except the job j is moved immediately
after the job i so that C'=C,. Then, the difference of objective values between S and S is Z
(S)~Z(SH)=1A(V+W)p,— | B IV -W)p,+C(V+W)+C(V-W) —p,(V—W) —2dV. Therefore, if
(VW)L 1A4;lp+C1+C(V—W) —2dV=(|B|+1)(V- W)p,, then Z(S)=Z(5’). And the V-shaped
sequence S' is not worse than S and S°

This completes the proof.

Notice that the job j in tardy position can only be moved to early position{ when s—p;>0.
As commented above, the scheduling problem for the case of W<V is NP-complete. Thus, all

the solution properties shall now be put together o derive a heuristic algorithm as follows :

Step 1. Sequence the jobs to be V-shape as an initial sequence.

Step 2. Find the optimal starting time for the current sequence by using Proposition 2, and
then calculate the objective value of the resulting schedule.

Step 3.

(1) For each pair of two jobs i and j, i€E and jET, apply the results of Propositions 6, 7,
and 8 to improve the objective value.

(a) Check if the positions of i and ; can be interchanged by using the results of Prop-
osition 6.

(b) Check if the job i can be moved to a uardy position by using the results of Prop-
osition 7.

(¢) Check if the job j can be moved to an early position by using the results of Prop-
osition 8.

(2) If there exists any pair of two jobs i and ; improving the objective value, then re-
arrange the sequence maintaining V-shape and then go to Step 2. Otherwise, stop and accept
the current sequence as a heuristic solution.

In the algorithm, an initial feasible solution sequence is obtained at Step 1. The initial se-
quence is constructed to be V-shape by assigning the jobs in early position according to Hall’s

algorithm[6] until the total processing time of assigned early jobs is less than or equal to d.
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A schedule is determined by calculating the optimal starting time at Step 2. Finally, this
sequence with its optimal starting time is improved by rearranging the sequence at Step 3. If
rearranging is occurred, it is required to modify the starting time to improve the schedule.
This step-by-step interactive procedure continues until no further improvement is possible with

maintaining V-shape.

5. Computational Experience

The heuristic procedure is coded in PASCAl on the IBM PC/AT, and the test problems
are generated with three different due dates of d=02 TP, 0.6 TP, 1.0 TP(TP denoting total
processing time) and three different values of W/V=1/3, 1/5, 1/10. And p; are randomly
generated from a discretely uniform distribution from 1 to 100.

To evaluate the effectiveness of the proposed heuristic algorithm, a lower bound(LB) is de-
veloped. It is easily seen that the optimal solution of the Z(S) with unrestricted size on due
date but without flow time measuring term provides a lower bound. Similar to Szwarc[11], a
lower bound (LB,) can be calculated by using the optimal objective value of the unrestricted
model of Z(S) without considering explicitly the flow time measuring term from the SPT
sequencing as
_ (VAW k(prtp) +(E=1) (pstp) -+ (Pou+Po), if n is odd,

(VW) Lo+ (k= 1) (prps) + - H(poatou), if n is even.

LB,

where % is the longest integer less than or equal to n/2.
It can easily be verified that LB, is a lower bound for Z(S*) by result of Proposition 2 since
n/2<n(V+W)/(2V)<n when W<V.
And another lower bound(LB;) can be found from the SPT sequencing as
LB, = WY n—i+1)p,
Therefore, the lower bound(LB) is obtained as
LB=Min!LB,, LBj.
To evaluate the effectiveness of the proposed heuristic algorithm, 450 test problems are
generated in total, ten problems for each combination of d, W/V, and n=5, 8, 10, 12, 15. These
problems are examined in terms of the mean relative errors(MRE) over the optimal solution

(obtained by a branch-and-bound algorithm separately constructed only for small-sized problem

by use of Propositions 1 through 8) shown in Table 1. In the optimal solution search process,
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the test problem set having any problem required more than 30 minutes to solve is cut off
from further consideration.

All the test problems show the effectiveness of the proposed heuristic algorithm, measured
for each combination of d, W/V, and n as in Table 1 and average at the MRE, 3.22%. It can
be seen from these test results that the error is larger when d=0.6 TP than other cases, that
it gets increasing trend as the W/V becomes larger[smaller] when d=0.6 TP [d=02 TP], and
that it gives nondecreasing trend as the problem size n increases. It is noticed that the test
results associated with due date d=0.6 TP may require any better procedure for sequencing,
however, the test results associated with d=0.6 TI' are not satisfactory even if a V-shaped se-
quence for indefinite due date(or sufficiently large due date to be unrestricted model) is con-
sidered as its initial solution incorporating the fazt of which the V-shape sequencing is opti-
mal when the flow time measuring term is not corsidered and the due date d is. approximately
larger than or equal to 0.5 TP(Szwarc[11]).

It is also shown in Table 1 that the MRE's »f LB with respect to the optimal solution
show decreasing trend as n gets larger.

For the efficiency test and conjecturing the quality of heuristic solution in large problem
size n, another set of the total 450 test problems(ten problems for each combination of d,
W/V, and n=20, 30, 50, 90, 170) are measured in "PU time as listed in Table 2. In the prob-
lem set, optimal solutions are not found readily so that sequences with s=0 are considered to
evaluate the relative superiority of the heuristic rusult, based on the fact the any(random) se-
quence with s=0 can be feasible to any variatiom of the given problem with different due
dates. The overall mean deviation of all the rancemly-generated schedule(sequences) from the
heuristic solution is then computed at 29.44%. This implies that the solution properties de-
rived in Sections 3 and 4 may contribute lot to finding a good solution efficiently.

The mean deviation of LB from the heuristic solution, measure with all the test problems of
the two set given in Tables 1 and 2, show decreasing trend as n is larger. This further
implies that the heuristic algorithm may work weil with even larger n. In conclusion, the heu-
ristic algorithm is considerably good for the situations where due date is extremely large or

small with computational efficiency as listed average CPU times in Tables 1 and 2.



126

Un Gi Joo - Chang Sup Sung

B PR EE

(Table 1> Mean relative deviations(n=5, 8, 10, 12, 15)

wiv CPU time(second)
n d 1/3 1/5 1/10 optimal heuristic
5 02 TP 0.0031 0.0042 0.0058 0.043 0.014
0.5625 0.5520 0.5226
1.2959 1.2450 1.1106
06 TP 0.0934 0.0534 0.0630 0.066 0.030
0.3894 0.3513 0.2427
0.7984 0.6319 0.4136
1.0 TP 0.0285 0.0107 0.0137 0.062 0.031
0.5344 0.4418 0.3020
1.2191 0.8163 0.4548
9 02 TP 0.0201 0.0284 0.0365 0.796 0.020
0.5021 0.4877 0.4739
1.0505 1.0094 0.9719
06 TP 0.0643 0.0439 0.0424 1.332 0.024
0.3651 0.2803 0.1902
0.6843 0.4544 0.2896
1.0 7P 0.0060 0.0102 0.0074 0.810 0.042
0.5354 0.4413 0.3030
1.1747 0.8142 0.4475
10 02 TP 0.0226 0.0325 0.0857 24.558 0.024
0.4832 0.4674 0.4310
0.9817 0.9415 0.9020
06 TP 0.1108 0.0709 0.0684 63.652 0.024
0.3312 0.2557 0.1596
0.6747 0.4660 0.2750
1.0 TP 0.0046 0.0037 0.0050 5.580 0.060
0.5468 0.4531 0.3146
1.2462 0.8511 0.4722

MRE of heuristic solution to optimal solutionitop)
MRE of lower bound to optimal solution(middle)

MRE of heuristic solution to lower bound(bottom)
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(Table 1> Mean relative deviations(Continued)

wlv CPU time(second)
n d 1/3 1/5 1/10 optimal heuristic
12 02 TP 0.0211 0.0274 0.0337 454.959 0.029
0.4622 0.4468 0.4318
0.8991 0.8575 0.8197
06 TP 0.0572 0.0536 0.0449 696.489 0.030
0.3178 0.2346 (0.1298
0.5522 0.3780 0.2156
1.0 TP 0.0028 0.0092 0.0018 47.217 0.071
0.5160 0.4228 0.2896
1.0806 0.7525 0.4117
15 02 TP 0.0579 0.0595 > 1214.298 0.029
0.4501 0.4339 >
0.9240 0.8719 0.8245
0.6 TP > > > 0.040
> > >
0.5356 0.3646 0.2092
1.0 TP 0.0021 0.0041 0.0034 898.323 0.115
0.5188 0.4255 0.2922
1.0858 0.7498 0.4184

> indicating problems requiring more than 30 minutes to solve
MRE of heuristic solution to optimal solution(top)
MRE of lower bound to optimal solution(middle)

MRE of heuristic solution to lower bound(bottom!
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{Table 2) Mean relative deviations{(n=20, 30, 50, 90, 170)
WiV average
CPU time
n d 1/3 1/5 1/10 (second)
20 0.2 TP 0.2731 0.282 0.2830 0.037
0.8703 0.8172 0.7690
06 TP 0.1764 0.2112 0.2480 0.048
0.5349 0.3616 0.2037
1.0 TP 0.2429 0.3612 0.4787 0.164
1.1248 0.7704 0.4278
30 02 TP 0.2565 0.2633 0.2698 0.054
0.8831 0.8255 0.7732
06 TP 0.1842 0.2211 0.2598 0.076
0.5196 0.3488 0.1933
1.0 TP 0.2576 0.3766 0.4935 (.332
1.1309 0.7765 04335
50 02 TP 0.2707 0.2780 0.2850 0.110
0.8341 0.7763 0.7238
0.6 TP 0.1997 0.2404 0.2825 0.154
0.5190 0.3471 0.1908
1.0 TP 0.2701 0.3910 0.5071 0.753
1.1588 0.7947 0.4471
90 02 TP 0.2729 0.2802 0.2871 0.251
0.8311 0.7733 0.7208
0.6 TP 0.1951 0.2325 0.2716 0.383
0.5046 0.3367 0.1841
1.0 TP 0.2694 0.3877 0.5072 2.192
1.1525 0.7984 0.4430
170 0.2 TP 0.2687 0.2761 0.2831 0.674
0.8251 0.7673 0.7148
06 TP 0.1928 0.2296 0.2679 1.137
0.4964 0.3310 0.1807
10 TP 0.2673 0.3910 0.5101 4.987
1.1612 0.7934 0.4404

MRE of heuristic solution to initial solution(top)

MRE of heuristic solution to lower bound(bottom)
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6. Conclusion

This paper considers a single machine nonpreemprive scheduling problem to find the optimal
schedule which minimize the sum of earliness/tardiness and flow time measures for all jobs,
where all the jobs are available at time 0.

For the problem, some dominant solution properties are characterized with respect to the
relative size of weights W and V. At first, it is found that a SPT sequencing with s*=0 is
optimal if W=V,

For the case of W<V, it is characterized that & V-shaped sequence is optimal. However, a
heuristic algorithm is developed incorporating derived properties about optimal starting time
and improving rules for a current schedule since this problem is NP-complete. The improving
rules are composed of a pairwise interchange rule and two moving rules from early to tardy
position or vice versa. »

The computational experience with the heuristic algorithm shows great potential(preference)
with short or long distant due date or large number of jobs.

For further study, it may be extended to a problem with jobs having different weights. And
the problem of jobs with different due dates is another subject. Problem with multiple

machines may be even more interesting but tough.
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