• Title/Summary/Keyword: Single walled Carbon Nanotubes(SWNT)

Search Result 42, Processing Time 0.025 seconds

Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film (탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발)

  • Lee, Dongwook;Ahn, Heeho;Seo, Byeong-Gwuan;Lee, Seung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Some Features of Dye-sensitized Solar Cell Combining with Single-walled Carbon Nanotubes

  • Lee, Sanghun;Park, Hyunjune;Park, Taehee;Lee, Jongtaek;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.925-928
    • /
    • 2014
  • A dye-sensitized solar cell (DSSC) was fabricated with a nanocrystalline $TiO_2$ film electrode on FTO glass, N719 dye, electrolytes (or $CsSnI_3$), and counter Pt electrode by incorporating it with single-walled carbon nanotubes (SWNTs). SWNTs were combined with $TiO_2$ film, $CsSnI_3$, Pt electrode, separately, and the SWNT-containing cell was compared with a pristine cell in cell performance. We also examined the performance change by pressing $TiO_2$ film, during cell fabrication, inside a high pressure chamber. Mostly, the change of conversion efficiency was compared for each cell, and an atomic force microscopy data were suggested to explain our results.

Inkjet Printing of Single Walled Carbon Nanotubes

  • Song, Jin-Wong;Han, Chang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.79-81
    • /
    • 2008
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as $34{\mu}m$. In this repeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about ${\pm}5%$ deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Analytical Modeling of Carbon Nanotube Actuators (탄소나노튜브 액츄에이터의 이론적 모델링)

  • 염영일;박철휴
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.

Variation of Gas Selectivity by Silane binders in SWNT Gas sesnsors (SWNT 가스센서에서 실란 바인더에 의한 가스 선택성의 변화)

  • Lee, Ho-Jung;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.19-19
    • /
    • 2010
  • We suggest CNT-based gas sensors for breath alcohol measurement. The sensors were composed of single-walled carbon nanotubes (SWNTs) thin film on glass substrate with simple process, and the SWNTs thin film as sensing layer was formed by multiple spray-coating with SWNT composites which was well-dispersed, highly controlled and differently functionalized by various binders (TEOS, MTMS, and VTMS) added in ethanol solvent. In this work, three different SWNTs thin films were made to compare their electrical response properties for alcohol vapor. From fabricated sensors, conductance responses were measured and discussed. In the result, our alcohol gas sensors showed an effective selectivity even at room temperature.

  • PDF

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

에틸렌 원료가스를 이용한 단일벽 탄소나노튜브의 저온합성

  • Jo, Seong-Il;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.239.1-239.1
    • /
    • 2015
  • 1차원 탄소나노재료이며 한 겹의 흑연을 말아 놓은 형태인 단일벽 탄소나노튜브(Single-walled carbon nanotubes, SWNTs)는 감긴 형태에 따라 반도체성, 금속성 성질을 나타내는 특이성과 우수한 기계적 성질을 지니고 있어 광범위한 분야로 응용이 기대되어왔다. 이러한 SWNTs의 응용가능성을 실현시키기 위해서는 보다 경제적, 산업적인 면에서 손쉬운 합성방법의 개발이 필요한 실정이다. SWNTs의 합성 방법들로는 아크방전법과 레이저 증발법, 그리고 열화학기상증착법(Thermal chemical vapor deposition, TCVD) 등이 이용되었다. 이 중 TCVD법은 대면적의 균일한 CNTs를 합성할 수 있다는 장점이 있다. 그러나 탄화수소가스를 효율적으로 분해하기 위하여 $800^{\circ}C$ 이상의 고온 공정이 요구되며, 이는 경제적, 산업적인 면에서 사용이 제한적이다. 따라서 저결함, 고수율의 SWNTs를 저온합성 할 수 있는 공정의 개발이 지속적으로 필요하다. 본 연구에서는, TCVD법을 이용하여 에틸렌 원료가스로 SWNTs의 저온합성 가능성을 확인하였다. 합성을 위한 기판과 촉매로는 실리콘 산화막 기판(SiO2/Si wafer)에 철 나노입자를 지닌 ferritin을 스핀코팅 후 산화하여 이용하였다. 저온합성 공정의 변수로는 합성온도와 원료가스인 에틸렌의 분율을 설정하여, 변수가 SWNTs의 결정성과 수율에 미치는 영향을 고찰하였다. 합성된 SWNTs의 분석의 용이함과 손지기(Chirality)의 제어를 위하여 나노 다공성 물질인 제올라이트(Zeolite)를 보조 기판으로 사용하였다. 실험결과 에틸렌 원료가스로 합성한 SWNTs는 $700^{\circ}C$ 부근의 저온에서도 합성이 가능함을 확인하였다. 또한 에틸렌 원료가스의 분율과 합성시간의 정밀한 제어를 통해 SWNTs의 합성온도를 더욱 감소시키는 것도 가능할 것으로 예상된다.

  • PDF

Field emission properties of SWNTs (single-walled nanotubes) synthesized by arc-discharge method (Arc-Discharge로 합성한 SWNT의 전계방출 특성)

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Moon, Seung-Il;Hwang, Ho-Soo;Han, Jong-Hoon;Yoo, Jae-Eun;Nahm, Sahn;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.185-188
    • /
    • 2004
  • A diode structure of field emission lamps based upon carbon-nanotube is studied. The single-walled carbon nanotubes(SWNTs) were produced by arc discharge method. We made the 1-inch diode type flat lamp using CNTs. We applied anode voltage gradually to refine the field emission behavior of emitter in dynamic vacuum system to study the emission current. the brightness and efficiency, etc. The field emission properties was estimated by varying gaps between the cathode and anode, contents of the glass frit. The good luminous efficiency is showed in the gap $900{\mu}m$, $1200{\mu}m$ and contents of the proper glass frit. For the upper conditions, the luminous efficiencies were respectively 23.30, 11.12 1m/W.

  • PDF

A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES (저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석)

  • Shon, B.C;Kwak, H.S.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.